English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Food Biochemistry 2020-Oct

Salacia chinensis exerts its antidiabetic effect by modulating glucose-regulated proteins and transcription factors in high-fat diet fed-streptozotocin-induced type 2 diabetic rats

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Fusun Erten
Cemal Orhan
Mehmet Tuzcu
Besir Er
Patrick Deeh
Nurhan Sahin
Ibrahim Özercan
Vijaya Juturu
Kazim Sahin

Keywords

Abstract

This study aimed to investigate the properties of Salacia chinensis (Celastraceae, SC) and its molecular mechanism in the type 2 diabetic rats. Forty-two Wistar rats were divided into six groups (n = 7): control, SC (100 mg/kg, per os), high-fat diet (HFD), HFD + SC (100 mg/kg), HFD + streptozotocin (STZ, 40 mg/kg, i.p.), and HFD + STZ+SC. SC decreased serum glucose, insulin, triglycerides, free fatty acid, and malondialdehyde levels, but increased serum total antioxidant capacity (0.33 ± 0.02 versus. 0.79 ± 0.03), compared with the untreated group (p < .001). Additionally, SC elevated the expression of glucose-regulated proteins GLUT2, PPAR-ɣ, p-IRS, and Nrf2, but downregulated NF-κB in the liver and kidney (p < .001). In conclusion, SC could improve insulin resistance by modulation of glucose-regulated proteins and transcription factors in diabetic rats. PRACTICAL APPLICATIONS: Present data has contributed to the current ethnomedicinal benefits of SC, through which the SC intake regulated the carbohydrate metabolism and increased the antioxidant capacity. The balance of transcription factors can mediate these efficacies partially and various key proteins involved in energy metabolism, along with oxidative stress and insulin sensitivity.

Keywords: Salacia; diabetes; glucose transporters; oxidative stress; transcription factors.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge