English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Neuropharmacology 2020-Jan

Salvianolic acid A increases the accumulation of doxorubicin in brain tumors through Caveolae endocytosis.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Cai Zhang
Yali Pan
Ruiping Cai
Sirui Guo
Xiaoyi Zhang
Yixue Xue
Jiahong Wang
Jian Huang
Jinhui Wang
Yanting Gu

Keywords

Abstract

Brain glioma is one of the most common brain tumors in the central nervous system (CNS). The blood-brain tumor barrier (BTB) restricts the delivery of anti-tumor drugs into tumor tissue in the brain. Therefore, improving the transportation of antineoplastic drugs across the BTB is essential to ameliorate treatment of brain tumors. The present study was performed to explore the effect and mechanism of salvianolic acid A (Sal A) on transportation of doxorubicin (Dox) across the BTB in vivo and in vitro. By creating a brain C6 glioma model in rats, we demonstrated that Sal A significantly increased the level of Dox in brain tumor tissues as shown by liquid chromatograph mass spectrometry. Interestingly, we found that Sal A increased transendothelial electrical resistance (TEER) values of the BTB and decreased the permeability of FITC-Dextran (4kD) across the BTB in vitro. Furthermore the expression of tight junction proteins (TJs) in glioma endothelial cells (GECs) and brain tumor microvessels were also increased, suggesting that Sal A enhanced delivery of Dox across the BTB independent of the paracellular pathway. Next, we detected that Sal A had an effect on transcellular transport of compounds across the BTB. The accumulation of FITC-labeled bovine serum albumin (FITC-BSA) was significantly increased in GECs after treatment with Sal A (10 μM) for 6h, which was inhibited after pre-treatment with methyl-β-cyclodextrin (MβCD) for 30 min. The increased delivery of Dox across the BTB was also reduced after treatment with MβCD. In addition, phosphorylation levels of protein kinase B(PKB) and tyrosine protein kinase-Src family(Src) were increased in the Sal A treatment group. Sal A up-regulated the expression level of the phosphorylation of Caveolin-1 (pCaveolin-1), and this effect was reversed by a PKB or Src inhibitor. Taken together, our study showed for the first time that Sal A facilitated the delivery of antitumor drugs into brain tumor tissues by targeting the PKB/Src/Caveolin-1 signaling pathway.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge