English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Microbial Pathogenesis 2020-Jul

Seagrass Halodule pinifolia active constituent 4-methoxybenzioic acid (4-MBA) inhibits quorum sensing mediated virulence production of Pseudomonas aeruginosa

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jeyapragash Danaraj
Yosuva Mariasingarayan
Saravanakumar Ayyappan
Vijayakumar Karuppiah

Keywords

Abstract

Biofilm associated, multidrug resistant Pseudomonas aeruginosa infection remain a challenging problem in the clinical field since the conventional antibiotic therapy are largely inefficient and new approaches are needed. Inactivating the QS virulence mechanism with anti-infective agent is an attractive approach to prevent bacterial infections without resistance development. Seagrass Halodule pinifolia (Miki) Hartog has been shown to exhibit potential antimicrobial activities against harmful pathogens. Our study investigated the effects of seagrass H. pinifolia leaf extract and its bioactive constituents on QS-mediated virulence factors and biofilm formation in P. aerugonasa PAO1. Preliminary screening on antibiofilm activity showed that the methanolic extract of H. pinifolia exhibited potential inhibition of biofilm formation (96%) as compared to the control respectively. Further, the potential extract was column fractionated and the active fraction was characterized by GC-MS. In total eight active compounds (protocatacheuic acid (69.3%), rosmarinic acid (63.5%), caffeic acid (59.18%), p-coumaric acid (59.08%), 4-methoxybenzoic acid (53.19%), naringenin (52.9%), vanillic acid (49.19%), 4-hydroxybenzoic acid (41.73%)) were profiled from fraction 2 and were purified by HPLC, structurally confirmed by NMR. Among the eight compounds studied, 4-methoxybenzoic acid (4-MBA) showed an effective inhibition of bacterial growth and was considered as a lead molecule with minimum inhibitory concentration (MIC) of 62.5 μg/mL. Further the effect of 4-MBA on QS mediated virulence factors demonstrated that the compound at MIC concentration reduced the virulence factor production such as elastase (87.5%), protease (79.38%), pyocyanin (91.46%), rhamnolipid (86%), alginate (86%), chitinase (55%), exopolysaccharide production (83.72%) and CSH (78.39%) over the control respectively. Moreover, 4-MBA down regulated the QS-mediated virulence transcript levels upon treatment with 4-MBA. The present findings suggests that seagrasses may act as a newer source for the marine based drug discovery and the lead compound 4-MBA derived from H. pinifolia may act as anti-infective agent against P. aeruginosa as it controls the QS-mediated virulence production.

Keywords: Biofilm; Halodule pinifolia; P. aeruginosa; Quorum sensing; Seagrass; Virulence.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge