English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Accounts of Chemical Research 2020-Feb

Semiconducting Polymer Nanomaterials as Near-Infrared Photoactivatable Protherapeutics for Cancer.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jingchao Li
Kanyi Pu

Keywords

Abstract

Cancer therapy is routinely performed in the clinic to cure cancer and control its progression, wherein therapeutic agents are generally used. To reduce side effects, protherapeutic agents that can be activated by overexpressed cancer biomarkers are under development. However, these agents still face certain extent of off-target activation in normal tissues, stimulating the interest to design external-stimuli activatable protherapeutics. In this regard, photoactivatable protherapeutic agents have been utilized for cancer treatments. However, because of the intrinsic features of photolabile moieties, most photoactivatable protherapeutic agents only respond to ultraviolet-visible light, limiting their in vivo applications. Thus, protherapeutic agents that can be activated by near-infrared (NIR) light with minimal phototoxicity and increased tissue penetration are highly desired. In this Account, we summarize our semiconducting polymer nanomaterials (SPNs) as NIR photoactivatable protherapeutic agents for cancer treatment. SPNs are transformed from π-conjugated polymers that efficiently convert NIR light into heat or singlet oxygen (1O2). With photothermal and photodynamic properties, SPNs can be directly used as photomedicine or serve as light transducers to activate heat or 1O2-responsive protherapeutic agents. The heat-activatable SPN-based protherapeutic agents are developed by loading or conjugating of SPNs with therapeutic agents (e.g., agonist, gene, and enzyme). For instance, photothermally triggered release of agonists specifically activates certain protein ion channels on the cellular membrane, leading to ion overinflux induced mitochondria dysfunction and consequently apoptosis of cancer cells. Moreover, photothermal activation of temperature-sensitive bromelain can promote the in situ degradation of collagens (the major components of extracellular matrix), resulting in an improved accumulation of agents in tumor tissues and thus amplified therapeutic outcome. The 1O2-activatable SPN-based protherapeutic agents are constructed through covalent conjugation of SPNs with caged therapeutic agents via hypoxia- or 1O2-cleavable linkers. Upon NIR photoirradiation, SPNs consume oxygen to generate 1O2, which leads to photodynamic therapy (PDT), and meanwhile breaks hypoxia- or 1O2-cleavable linkers for on-demand release and in situ activation of caged protherapeutic molecules (e.g., chemodrug, enzyme, and inhibitor). Such remote activation of SPN-based protherapeutic agents can be applied to induce DNA damage, ribonucleic acid degradation, inhibition of protein biosynthesis, or immune system activation in tumors of living animals. By synergizing PDT with NIR photoactivation of those biological actions, these protherapeutic agents effectively eliminate tumors and even fully inhibit tumor metastasis. This Account highlights the potential of SPNs for construction of versatile NIR photoactivatable protherapeutics to treat cancer at designated times and locations with high therapeutic outcome and precision.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge