English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical and Biophysical Research Communications 2020-Mar

Sennoside A restores colonic barrier function through protecting colon enterocytes from ROS-induced mitochondrial damage in diet-induced obese mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Li
Xinyu Cao
Xiaotong Ye
Youke Qi
Yawen Zhu
Jianping Ye
Yongning Sun

Keywords

Abstract

The intestinal barrier dysfunction is closely implicated in low-grade chronic inflammation for insulin resistance in diet-induced obesity (DIO). It is generally believed that degradation of colon enterocytes contributes to intestinal barrier dysfunction in the pathological process of obesity. Sennoside A (SA) is reported to improve metabolic disorders, but the effect and mechanism of SA on colonic barrier function of DIO remains unknown. In this study, SA was found to restore colonic barrier function by protecting the continuity and integrity of colon enterocytes in DIO mice. An increase in mRNA expression of tight junction proteins Occludin, Claudin-2 and ZO-1 provides another mechanism of restoring colonic barrier function in SA-treated group. In the research of mechanism, mitophagy was inhibited by SA via a protection of mitochondrial structure and function in colon. A reduction was found in production of reactive oxygen species (ROS) in the colon, and the benefical effect was attributed to an inhibition of activity in complex I and III with a reduction of protein expression and an increase of Mn-SOD activity. The results indicate that SA can restores colonic barrier function through protecting colon enterocytes from ROS-induced mitochondrial damage in DIO mice.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge