English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Cancer Research 2020-Sep

SLFN5 influences proliferation and apoptosis by upregulating PTEN transcription via ZEB1 and inhibits the purine metabolic pathway in breast cancer

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Xuefeng Gu
Guoqing Wan
Yue Yang
Yihao Liu
Xintong Yang
Yanjun Zheng
Liying Jiang
Peng Zhang
Dingsheng Liu
Weiming Zhao

Keywords

Abstract

Human Schlafen-5 (SLFN5) is aberrantly involved in tumorigenesis in several types of cancer. However, its implications in breast cancer (BRCA) are unknown. Herein, we demonstrated that SLFN5 expression is negatively associated with the tumour growth of human BRCA using GEO database analysis and clinical sample immunostaining. Lentiviral overexpression of SLFN5 in BRCA cell lines suppressed tumourigenicity in nude mice. Knockdown and overexpression of SLFN5 in BRCA cell lines proved that SLFN5 can inhibit cell proliferation and colony formation and promote apoptosis by upregulating the transcription of a known cancer suppressor gene (the phosphatase and tensin homologue on chromosome 10, PTEN), resulting in molecular changes in the downstream AKT pathway and in proliferation/apoptosis. Lentiviral knockdown and overexpression of ZEB1 blocked the changes in the PTEN and AKT pathways and in the colony formation ability caused by SLFN5 knockdown and overexpression, respectively. Luciferase reporter assays demonstrated that ZEB1 can inhibit the PTEN promoter activity in MCF7 cells by binding to a motif in the PTEN promoter. Metabonomics analysis showed that SLFN5 influences many metabolic pathways and especially decreases purine metabolites, including inosine, xanthine, and hypoxanthine. In conclusion, our findings suggest that SLFN5 may be an important protective factor against BRCA, as it regulates PTEN transcription, the AKT pathway, and proliferation/apoptosis via ZEB1 mediation and inhibits the purine metabolic pathway. Thus, SLFN5 may be a potential therapeutic target for BRCA.

Keywords: PTEN; SLFN5; apoptosis; breast cancer; purine metabolism.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge