English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Pesticide Biochemistry and Physiology 2020-Jun

Sodium Pheophorbide a Controls Cherry Tomato Gray Mold (Botrytis Cinerea) by Destroying Fungal Cell Structure and Enhancing Disease Resistance-Related Enzyme Activities in Fruit

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jing-Yu Ji
Jing Yang
Bo-Wen Zhang
Shu-Ren Wang
Guo-Cai Zhang
Lian-Nan Lin

Keywords

Abstract

Sodium pheophorbide a (SPA) is a natural photosensitizer. The present study investigated the antifungal activity and mechanism of SPA against Botrytis cinerea in vitro and in vivo. Its inhibitory effect was studied on the spore germination and mycelial growth of B. cinerea. The effects of SPA on cell wall integrity, cell membrane permeability, and mycelial morphology of B. cinerea were also determined. Additionally, how SPA effected B. cinerea in vivo was evaluated using cherry tomato fruit. The results showed that SPA effectively inhibited the spore germination and mycelial growth of B. cinerea under light conditions (4000 lx). SPA significantly affected both cell wall integrity and cell membrane permeability (P < .05). In addition, SEM analysis suggested that B. cinerea treated with SPA (12.134 mg/mL) showed abnormal mycelial morphology, including atrophy, collapse, flattening, and mycelial wall dissolution. In vivo tests showed that SPA could increase the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) significantly (P < .05); however, SPA had no significant effect on phenylalanine ammonia lyase (PAL) activity. In short, SPA could destroy the fungal cell structure and enhance disease resistance-related enzyme activity in cherry tomatoes, thereby controlling cherry tomato gray mold.

Keywords: Antifungal mechanism; Botrytis cinerea; Cherry tomato; Enzyme activity; Photoactivated fungicide; Sodium pheophorbide a.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge