English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Heliyon 2020-May

Spermine-priming restrained water relations and biochemical deteriorations prompted by water deficit on two soybean cultivars

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Mona Dawood
Amany Abeed

Keywords

Abstract

The outstanding role of spermine in eliciting defense adaptation of soybean to different levels of water deficit (0, -0.1, -0.5 and -1.1 MPa) was investigated by determining the changes in growth, photosynthetic pigments, osmolytes, water relations, and antioxidants. All the studied traits clearly revealed cultivar-dependent variation in response to water deficit where cv. Giza 111 was tolerant and cv. Giza 21 was sensitive. Both cultivars came in agreement that photosynthetic limitation (chlorophylls reduction) was the troubling shot induced by water deficit. Such limitation was reflected on three directions (a) disturbances of water relations (stomatal conductance, transpiration rate, relative water content and water use efficiency), (b) down regulation of metabolites which affect osmotic adjustment and (c) elevated reactive oxygen species (increased hydrogen peroxide) and destruction of membrane stability (increment of electrolyte leakage and lipid peroxidation). The damaging impacts of water deficit on these parameters were obviously coined for sensitive cultivar compared to tolerant one. Although spermine priming did not have apparent stimulatory role on well-watered plants, unequivocal inversion from a state of down regulation to up-regulation was distinct under water stress. In this regard, spermine enhanced pigments, osmolytes accumulation, up-regulated water relations and enhanced membrane stabilization. Furthermore, spermine pre-sowing decreased oxidative stress by lowering hydrogen peroxide via activation of anthocyanins, total antioxidants and phenolic compounds.

Keywords: Agricultural science; Antioxidants; Biochemistry; Biotechnology; Earth sciences; Ecology; Environmental science; Hydrology; Osmolyte; Physiology; Pigments; Plant biology; Spermine; Water deficit; Water relation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge