English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Functional Plant Biology 2006-Jun

Systemic Potato virus X infection induces defence gene expression and accumulation of β-phenylethylamine-alkaloids in potato

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Annette Niehl
Christophe Lacomme
Alexander Erban
Joachim Kopka
Ute Krämer
Joachim Fisahn

Keywords

Abstract

A better understanding of defence responses elicited during compatible plant-virus interactions is a current goal in plant pathology. We analysed defence responses during infection of Solanum tuberosum L. cv. Desiree with Potato virus X (PVX) at the transcript and metabolite level. A mostly unchanged primary metabolism reflects the compatible nature of this plant-virus interaction. Salicylic acid biosynthesis and expression of several defence genes including PR-1 and glutathione-S-transferase, which are involved in ethylene and reactive oxygen species dependent signalling, were highly up-regulated in upper-uninoculated (systemic) leaves of PVX-infected potato plants compared with mock-inoculated controls. Moreover, the β-phenylethylamine-alkaloids tyramine, octopamine, dopamine and norepinephrine were highly induced upon infection. β-phenylethylamine-alkaloids can contribute to active plant defence responses by forming hydroxycinnamic acid amides (HCAA), which are thought to increase cell wall stability by extracellular peroxidative polymerisation. Expression of tyramine-hydroxycinnamoyl transferase (THT) and apoplastic peroxidase (POD) was highly induced upon PVX infection in systemic leaves, which suggests synthesis and extracellular polymerisation of HCAA. Since cell-wall-bound ion concentrations could contribute to this process, we measured cell-wall-bound and total ion concentrations in PVX-infected and mock-inoculated leaves. The observed metabolic and transcriptional changes might represent a systemic acquired resistance response against subsequent pathogen challenge.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge