English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2020-Mar

The anti-TH17 polarization effect of Indigo naturalis and tryptanthrin by differentially inhibiting cytokine expression.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Hui-Man Cheng
Yi-Zih Kuo
Che-Ying Chang
Chun-Han Chang
Wei-Yu Fang
Chen-Ni Chang
Shin-Chen Pan
Lin Jin-Yuarn
Li-Wha Wu

Keywords

Abstract

The Chinese herbal medicine Qing-Dai (also known as Indigo naturalis) extracted from indigo-bearing plants including Baphicacanthus cusia (Ness) Bremek was previously reported to exhibit anti-psoriatic effects in topical treatment. TH17 was later established as a key player in the pathogenesis of psoriasis. We investigated the anti-TH17 effect of Indigo naturalis and its active compounds.To evaluate the toxicity of Indigo naturalis (IN) and its derivatives on five cell types involved in psoriasis and to study the anti-inflammatory mechanism for the toxicity.Following the fingerprint and quantity analysis of indirubin, indigo, and tryptanthrin in IN extract, we used MTS kits to measure the anti-proliferative effect of IN and three active compounds on five different cell types identified in psoriatic lesions. Quantitative RT-PCR analysis was used to measure the expression of various genes identified in the activated keratinocytes and TH17 polarized gene expression in RORγt-expressing T cells.We showed that IN differentially inhibited the proliferation of keratinocytes and endothelial cells but not monocytes, fibroblasts nor Jurkat T cells. Among three active compounds identified in IN, tryptanthrin was the most potent compound to reduce their proliferation. In addition to differentially reducing IL6 and IL8 expression, both IN and tryptanthrin also potently decreased the expression of anti-microbial S100A9 peptide, CCL20 chemokine, IL1B and TNFA cytokines, independent of NF-κB-p65-activation. Their attenuating effect was also detected on the expression of signature cytokines or chemokines induced during RORγT-induced TH17 polarization.We were the first to confirm a direct anti-TH17 effect of both IN herbal extract and tryptanthrin.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge