English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Microbiology 2020-Sep

The enhancing antibiofilm activity of curcumin on Streptococcus mutans strains from severe early childhood caries

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Bingchun Li
Ting Pan
Huancai Lin
Yan Zhou

Keywords

Abstract

Background: Streptococcus mutans (S. mutans) is one of the main cariogenic bacteria for caries. It was found that the clinical strains of S. mutans isolated from caries active population have stronger cariogenic ability than the isolates from caries-free (CF) people. Previous studies have found that curcumin can inhibit biofilm formation of S. mutans UA159. The objective of this study is to explore the antibiofilm effect of curcumin on the clinical isolates of S. mutans from severe early childhood caries(SECC).

Results: The isolates from SECC group had more biomass than CF group (t = 4.296, P < 0.001). The acidogenicity and aciduricity of the strains from two groups showed no significant difference. After treatment with curcumin, the viability of biofilm was reduced to 61.865% ± 7.108% in SECC and to 84.059% ± 10.227% in CF group at 24 h (P < 0.05). The net reduction of live bacteria and total bacteria in the SECC group was significantly higher than that of the CF group (live bacteria t = 3.305, P = 0.016; total bacteria t = 2.378, P = 0.045) at 5 min. For 24 h, the net reduction of live bacteria and total bacteria in the SECC group was significantly higher than that of the CF group (live bacteria t = 3.305, P = 0.016; total bacteria t = 2.378, P = 0.045). The reduction of biofilm thickness reduced significantly in 5 min (t = 4.110, P = 0.015) and in 24 h (t = 3.453, P = 0.014). Long-term (24 h) curcumin treatment inhibited the amount of EPS in SECC group from (25.980 ± 1.156) μm3/μm2 to (20.136 ± 1.042) μm3/μm2, the difference was statistically significant (t = 7.510, P < 0.001). The gene of gtfC, gtfD, ftf, gbpB, fruA and srtA in the CF group and the gtfB, gtfC, gtfD, ftf, gbpB, srtA in SECC group were respectively reduced after 5 min curcumin treatment. After 24 h treatment, the gtfB, gtfC, gtfD, ftf, gbpB, fruA and srtA in both two groups were downregulation, all the differences were statistically significant.

Conclusions: Curcumin has antibiofilm activity on clinical strains of S. mutans, especially for those isolated from SECC.

Keywords: Biofilm; Clinical isolates; Curcumin; Streptococcus mutans.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge