English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Pharmacology 2020-Apr

The mechanisms of baicalin ameliorate obesity and hyperlipidemia through a network pharmacology approach.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Zi-Yuan Wang
Zheng-Meng Jiang
Ping-Ting Xiao
Ying-Qun Jiang
Wen-Jin Liu
E-Hu Liu

Keywords

Abstract

Obesity is one of the main causes of human cardiovascular and cerebrovascular diseases. Baicalin, a bioactive flavonoid isolated from the herbal medicine Scutellaria baicalensis Georgi, is reported to ameliorate obesity and hyperlipidemia. However, its mechanism remains unclear. Here, we used network pharmacology to explore the potential mechanism of baicalin on a system level. First, we predicted the targets of baicalin and diseases, and then protein-protein interaction (PPI) networks were constructed. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment was performed via the Database for Annotation, Visualization, and Integrated Discovery (DAVID) server. Lastly, we confirmed the results of the network analysis by palmitic acid (PA) treated human hepatoma cells (HepG2) in vitro. The results indicated that 37 targets related to obesity treated by baicalin were predicted by network pharmacology, and top 10 related pathways were extracted by the KEGG database. Baicalin treatment could reduce triglyceride (TG) contents and lipid droplet accumulation in PA-treated HepG2 cells. The anti-obesity effects of baicalin might be due to the up-regulation of solute carrier family 2 member 1 (SLC2A1) and down-regulation of tumor necrosis factor (TNF), nuclear factor kappa B subunit 1 (NFKB1), sterol regulatory element binding transcription factor 1 (SREBF1), peroxisome proliferator activated receptor gamma and caspase 3 (CASP3). Our results indicated that baicalin may regulate key inflammatory markers, adipogenesis process, and apoptosis for treatment of obesity.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge