English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Nutrition and Cancer 2020-Oct

The Natural Alkaloid Piperlongumine Inhibits Metastatic Activity and Epithelial-to-Mesenchymal Transition of Triple-Negative Mammary Carcinoma Cells

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Leanne Delaney
Nathan Farias
Javad Rad
Wasundara Fernando
Henry Annan
David Hoskin

Keywords

Abstract

In this study, we determined the effect of low dose piperlongumine on the motility/invasive capacity and epithelial-to-mesenchymal transition (EMT) of MDA-MB-231 triple-negative breast cancer (TNBC) cells and the metastasis of 4T1 mouse mammary carcinoma cells. MTT assays measured the effect of piperlongumine on TNBC cell growth. Motility/invasiveness were determined by gap closure/transwell assays. Western blotting assessed ZEB1, Slug, and matrix metalloproteinase (MMP) 9 expression. Interleukin (IL) 6 was detected by ELISA. MMP2, E-cadherin, and miR-200c expression was determined by real-time quantitative polymerase chain reaction. Reactive oxygen species (ROS) were measured by flow cytometry. The orthotopic 4T1 mouse model of breast cancer was used to examine metastasis. Piperlongumine-treated MDA-MB-231 cells showed reduced motility/invasiveness, decreased MMP2 and MMP9 expression, increased miR-200c expression, reduced IL-6 synthesis, decreased expression of ZEB1 and Slug, increased E-cadherin expression, and epithelial-like morphology. Piperlongumine also inhibited transforming growth factor β-induced ZEB1 and Slug expression. ROS accumulated in piperlongumine-treated cells, while changes in metastasis-associated gene expression were ablated by exogenous glutathione. Metastasis of 4T1 cells to the lungs of BALB/c mice was dramatically reduced in piperlongumine-treated animals. These findings reveal a previously unknown capacity of low dose piperlongumine to interfere with TNBC metastasis via an oxidative stress-dependent mechanism.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge