English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BioImpacts 2020-Aug

The Role of Mangroves in the Retention of Heavy Metal (Chromium): A Simulation Study in the Thi Vai River Catchment, Vietnam

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Anh Nguyen
Bao Le
Otto Richter

Keywords

Abstract

In this study, chromium (Cr) retention by the mangroves in the Thi Vai catchment located in the south of Vietnam was simulated using a coupled model of the hydrodynamic model Delft3D with Cr transport and a model for the uptake of Cr by mangroves. This coupled model was calibrated and validated using data from four hydrodynamic stations and data from phytoremediation studies. To analyze the effect of mangroves on reducing Cr pollution, three scenarios were run by the model. Scenario 1 (SC1) is based on the actual situation concerning discharges and the distribution of mangroves. Scenario 2 (SC2) simulates the deterioration of the actual situation by deforestation on the west bank and the establishment of more industrial zones on the east bank. Scenario 3 (SC3) simulates an eco-friendly development comprising the channeling of wastewater through constructed wetlands with mangroves prior to the discharge into the river. Simulation results showed that the total Cr uptake by mangroves in SC3 was higher than in the other two scenarios. In total, 33 kg Cr in water were absorbed by the constructed wetlands in SC3 within one month. The simulation results helped in overcoming the difficulties and challenges in assessing the capacity of mangrove forests on the retention of chromium at catchment scale.

Keywords: Rhizophora apiculata; heavy metal pollution; mangrove trees; mathematical model; phytoremediation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge