English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Investigative Ophthalmology and Visual Science 2020-Mar

Therapeutic Effect of Guggulsterone in Primary Cultured Orbital Fibroblasts Obtained From Patients with Graves' Orbitopathy.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Bo Kim
Jinjoo Kim
Jong Lee
Eun Lee
Jin Yoon

Keywords

Abstract

Inflammation, hyaluronan production, and adipogenesis are the main pathological events leading to Graves' orbitopathy (GO). Guggulsterone (GS), a phytosterol found in the resin of the guggul plant, is a well-known treatment for several inflammatory disorders, such as arthritis, obesity, and hyperlipidemia. Here we investigated the effects of GS treatment on GO pathology.Using primary cultures of orbital fibroblasts from GO patients and non-GO controls, we examined the effects of GS on hyaluronan production and the production of proinflammatory cytokines induced by interleukin (IL)-1β, using real-time reverse transcription-polymerase chain reaction analysis, western blots, and enzyme-linked immunosorbent assays. Further, adipogenic differentiation was evaluated by quantification of Oil Red O staining and assessment of protein levels of peroxisome proliferator activator gamma (PPARγ), CCAAT-enhancer-binding proteins (C/EBP) α and β, and sterol regulatory element-binding protein-1 (SREBP-1).Treatment with noncytotoxic concentrations of GS resulted in the dose-dependent inhibition of IL-1β-induced inflammatory cytokines, including IL-6, IL-8, MCP-1, and COX-2, at both mRNA and protein levels. The hyaluronan level was also significantly suppressed by GS. Moreover, GS significantly decreased the formation of lipid droplets and expression of PPARγ, C/EBP α/β, and SREBP-1 in a dose-dependent manner. GS pretreatment attenuated the phosphorylation of nuclear factor-kappa B induced by IL-1β.Our data show significant inhibitory effects of GS on inflammation, production of hyaluronan, and adipogenesis in orbital fibroblasts. To our knowledge, this is the first in vitro preclinical evidence of the therapeutic effect of GS in GO.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge