English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Toxicology and Environmental Health - Part A 2020-Mar

Toxicity and occupational exposure assessment for hydroprocessed esters and fatty acids (HEFA) alternative jet fuels.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Teresa Sterner
Brian Wong
Karen Mumy
R James
James Reboulet
Darol Dodd
Richard Striebich
David Mattie

Keywords

Abstract

The U.S. Air Force (USAF) has pursued development of alternative fuels to augment or replace petroleum-based jet fuels. Hydroprocessed esters and fatty acids (HEFA) renewable jet fuel is certified for use in commercial and USAF aircraft. HEFA feedstocks include camelina seed oil (Camelina sativa, HEFA-C); rendered animal fat (tallow, HEFA-T); and mixed fats and oils (HEFA-F). The aim of this study was to examine potential toxic effects associated with HEFA fuels exposures. All 3 HEFA fuels were less dermally irritating to rabbits than petroleum-derived JP-8 currently in use. Inhalation studies using male and female Fischer-344 rats included acute (1 day, with and without an 11-day recovery), 5-, 10- or 90-day durations. Rats were exposed to 0, 200, 700 or 2000 mg/m3 HEFA-F (6 hr/day, 5 days/week). Acute, 5 - and 10-day responses included minor urinalysis effects. Kidney weight increases might be attributed to male rat specific hyaline droplet formation. Nasal cavity changes included olfactory epithelial degeneration at 2000 mg/m3. Alveolar inflammation was observed at ≥700 mg/m3. For the 90-day study using HEFA-C, no significant neurobehavioral effects were detected. Minimal histopathological effects at 2000 mg/m3 included nasal epithelium goblet cell hyperplasia and olfactory epithelium degeneration. A concurrent micronucleus test was negative for evidence of genotoxicity. All HEFA fuels were negative for mutagenicity (Ames test). Sensory irritation (RD50) values were determined to be 9578 mg/m3 for HEFA-C and greater than 10,000 mg/m3 for HEFA-T and HEFA-F in male Swiss-Webster mice. Overall, HEFA jet fuel was less toxic than JP-8. Occupational exposure levels of 200 mg/m3 for vapor and 5 mg/m3 for aerosol are recommended for HEFA-based jet fuels.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge