English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Surgical Oncology 2020-Sep

Usefulness of bile as a biomarker via ferroptosis and cysteine prenylation in cholangiocarcinoma; role of diagnosis and differentiation from benign biliary disease

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jin-Yi Han
Keun Ahn
Won-Ki Baek
Seong-Il Suh
Yong Kim
Tae-Seok Kim
Koo Kang

Keywords

Abstract

Background: Cholangiocarcinoma (CCA) is a malignant cancer of the biliary tract with a poor prognosis. Herein, we investigated possible mechanism of extrahepatic CCA (eCCA) by dysregulated iron metabolism and post-translational modifications (PTMs). Further, we evaluated potential biomarkers in the bile fluid for diagnosis of eCCA and differentiation between eCCA and benign biliary disease.

Methods: From August 2018 to April 2019, we obtained bile fluids from 46 patients; 28 patients with eCCA (eCCA group) and 18 patients with common bile duct stone (Control group) via percutaneous transhepatic biliary drainage. We examined the levels of reduced glutathione (GSH), peroxide, ferrous iron [Fe+2], glutathione peroxidase (GPX) and farnesyl transferase/geranylgeranyl transferase type-1 subunit alpha (FNTA) concentration in bile fluids to clarify the mechanism of ferroptosis and prenylation.

Results: The remarkable difference of PTMs was that FNTA which means prenylated cysteine as regulator was significantly decreased in eCCA than that of control. In addition, level of GSH, peroxide, GPX and ferrous iron [Fe+2] were significantly depleted in eCCA than control. These results demonstrate that PTM, dysregulated iron metabolism and GPX-regulated ferroptosis with GSH depletion through cysteine modification in bile are possible mechanisms of eCCA. Liquid Chromatography (LC)-Mass Spectrometry (MS) analysis, several oncogenic pathways including MYC target, apoptosis, fatty acid metabolism, P53 and mTORC1 were enriched in eCCA.

Conclusions: In conclusion, redox-dependent modification of cysteine and ferroptosis in bile fluids are possible mechanisms of eCCA. Several protein and oncogenic pathways related to PTM which are seen in eCCA tissues were also enriched in bile fluids. It suggests that bile fluid represents the oncogenic characteristics of eCCA tissues. Therefore, bile fluids have a role of a biomarker for diagnosis in eCCA, especially, differentiation of eCCA from benign biliary stricture.

Keywords: Biliary system; Cholangiocarcinoma (CCA); Ferroptosis; Post-translational modification (PTM); Prenylated cysteine.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge