English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Functional Plant Biology 2007-May

Vacuolar acidity, protein profile, and crystal composition of epidermal bladder cells of the halophyte Mesembryanthemum crystallinum

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yingtzy Jou
Ya-Ling Wang
Hungchen Yen

Keywords

Abstract

The halophyte Mesembryanthemum crytallinum L. (ice plant) is marked by giant epidermal bladder cells (EBC). The differentiation of pavement cells into EBC occurs at an early developmental stage. EBC occupy most of the surface area in the aerial parts of salt-stressed mature ice plants. A large vacuolar reservoir for ion and water storage plays an important role in salinity adaptation. To monitor the acidity of the vacuole at different developmental stages of EBC, peels from the abaxial surface were stained with a pH-sensitive dye, neutral red (NR). Presence of both NR-stained (acidic) and NR-unstained (neutral) EBC were found at the juvenile stage in ice plants. Continuous exposure to illumination decreased the acidity of the NR-stained cells. The EBC protein profile illustrated the prominent co-existence of highly acidic and basic proteins in these specialised cells. Major proteins that accumulate in EBC are involved in photosynthesis, sodium compartmentalisation, and defence. Numerous raphide crystals were found in well fertilised ice plants. Salt-stressed cells exhibited changes in the surface charge and element composition of raphide crystals. A disappearance of potassium in the high-salt grown crystals suggests that these crystals might serve as a potassium reservoir to maintain the Na+/K+ homeostasis in this halophyte.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge