English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Materials Science and Engineering C 2020-Nov

Yttrium iron garnet for hyperthermia applications: Synthesis, characterization and in-vitro analysis

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Rushikesh Fopase
Varun Saxena
Papori Seal
J Borah
Lalit Pandey

Keywords

Abstract

Exclusive magnetocaloric properties of orthoferrites offer advantages for their application in the magnetic hyperthermia as well as imaging applications. In the present study, the effect of yttrium concentration on the magnetic characteristics of the iron oxide based nanomaterials was analyzed to assess their potential for the hyperthermia applications. The Sol-gel method was used to synthesize the Yttrium Iron Garnet (YIG) based nanoparticles, using different molar ratios of Fe and Y precursors, followed by the calcination at 900, 1000 and 1100 °C. XRD analysis determined the formation of the pure phase of yttrium iron garnet Y3Fe5O12 (YIG) at 0.5 molar ratio of yttrium at all the calcination temperatures and pure phase of yttrium iron perovskite YFeO3 (YIP) for 1 molar ratio of yttrium at 1000 and 1100 °C. The mean particle size was observed in the range of 100 to 400 nm. The magnetic characterization studies showed the highest saturation magnetization for the sample containing 0.5 molar ratio of the yttrium calcinated at 1000 °C. The magnetization values were linearly related to the contents of YIG phases in the synthesized samples. Induction heating of YIG resulted in the hyperthermia temperature (42 to 44 °C) in 13 min with the SAR values 114.65 W/g at 1 mg/ml. The prepared samples showed no in-vitro toxic effects on the MG63 cells (>90% cell viability). In addition, in-vitro treatment at hyperthermia temperature for 15 min reduced cell viability of cancer cells (A549) to 55%, while no toxic effect was observed on MG 63 cells. The present study postulates Yttrium Iron Garnet as an effective therapeutic agent for hyperthermia cancer treatment.

Keywords: Cancer; Cell viability; Magnetic hyperthermia; Orthoferrites; SAR; Sol-gel.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge