English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

aechmea comata/reductase

The link is saved to the clipboard
ArticlesClinical trialsPatents
6 results

Spatial division of phosphoenolpyruvate carboxylase and nitrate reductase activity and its regulation by cytokinins in CAM-induced leaves of Guzmania monostachia (Bromeliaceae).

Only registered users can translate articles
Log In/Sign up
Crassulacean acid metabolism (CAM) is a physiological adaptation of plants that live in stress environment conditions. A good model of CAM modulation is the epiphytic bromeliad, Guzmania monostachia, which switches between two photosynthetic pathways (C3-CAM) in response to different environmental

Adjustments in CAM and enzymatic scavenging of H2O2 in juvenile plants of the epiphytic bromeliad Guzmania monostachia as affected by drought and rewatering.

Only registered users can translate articles
Log In/Sign up
Juvenile plants of epiphytes such as bromeliads are highly prone to dehydration under drought conditions. It is likely that young epiphytes evolved mostly metabolic strategies to resist drought, which may include the plastic modulation of the enzymatic antioxidant system and crassulacean acid

Potential N2O Emissions from the Tanks of Bromeliads Suggest an Additional Source of N2O in the Neotropics.

Only registered users can translate articles
Log In/Sign up
We studied the propensity of the tank bromeliad Werauhia gladioliflora to emit the greenhouse gas nitrous oxide (N2O) at current and at increased N deposition levels in the range of predicted future scenarios. Potential production rates and net accumulation of N2O from tank substrate corresponded to

Bromeliad catchments as habitats for methanogenesis in tropical rainforest canopies.

Only registered users can translate articles
Log In/Sign up
Tropical epiphytic plants within the family Bromeliaceae are unusual in that they possess foliage capable of retaining water and impounded material. This creates an acidic (pH 3.5-6.5) and anaerobic (<1 ppm O(2)) environment suspended in the canopy. Results from a Costa Rican rainforest show that

Nitrogen metabolism in leaves of a tank epiphytic bromeliad: characterization of a spatial and functional division.

Only registered users can translate articles
Log In/Sign up
The leaf is considered the most important vegetative organ of tank epiphytic bromeliads due to its ability to absorb and assimilate nutrients. However, little is known about the physiological characteristics of nutrient uptake and assimilation. In order to better understand the mechanisms utilized

Ammonium intensifies CAM photosynthesis and counteracts drought effects by increasing malate transport and antioxidant capacity in Guzmania monostachia.

Only registered users can translate articles
Log In/Sign up
Guzmania monostachia (Bromeliaceae) is a tropical epiphyte capable of up-regulating crassulacean acid metabolism (CAM) in its photosynthetic tissues in response to changing nutrient and water availability. Previous studies have shown that under drought there is a gradient of increasing CAM
Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge