English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

aegilops speltoides/infertility

The link is saved to the clipboard
ArticlesClinical trialsPatents
Page 1 from 31 results

Photoperiod-sensitive cytoplasmic male sterility in wheat: nuclear-mitochondrial incompatibility results in differential processing of the mitochondrial orf25 gene.

Only registered users can translate articles
Log In/Sign up
An alloplasmic wheat line with the cytoplasm of Aegilops crassa expresses photoperiod-sensitive cytoplasmic male sterility (PCMS). Southern- and Northern-hybridization analyses showed that this line contains alterations in both the gene structure and transcription patterns of the mitochondrial gene

Comparative analysis of mitochondrial genomes between a wheat K-type cytoplasmic male sterility (CMS) line and its maintainer line.

Only registered users can translate articles
Log In/Sign up
BACKGROUND Plant mitochondria, semiautonomous organelles that function as manufacturers of cellular ATP, have their own genome that has a slow rate of evolution and rapid rearrangement. Cytoplasmic male sterility (CMS), a common phenotype in higher plants, is closely associated with rearrangements

QTL analysis of fertility-restoration against cytoplasmic male sterility in wheat.

Only registered users can translate articles
Log In/Sign up
The cytoplasm of Triticum timopheevi causes cytoplasmic male sterility (CMS) in common wheat (T. aestivum) cv. 'Chinese Spring' (CS), and that of Aegilops kotschyi causes CMS in spelt wheat (T. spelta) var. duhamelianum (Sp). CS has fertility-restoring (Rf) genes against the latter cytoplasm and Sp

Basic studies on hybrid wheat breeding : VIII. A new male sterility-fertility restoration system in common wheat utilizing the cytoplasms of Aegilops kotschyi and Ae. variabilis.

Only registered users can translate articles
Log In/Sign up
The nuclei of 12 common wheats (genome constitution AABBDD) were placed into the cytoplasms of Aegilops kotschyi and Ae. variabilis (both C(u)C(u)S(v)S(v)) by repeated backcrosses. Using these nucleus-cytoplasm hybrids, male sterility-fertility restoration relationship was investigated. Male

Tapetal-Delayed Programmed Cell Death (PCD) and Oxidative Stress-Induced Male Sterility of Aegilops uniaristata Cytoplasm in Wheat.

Only registered users can translate articles
Log In/Sign up
Cytoplasmic male sterility (CMS) plays a crucial role in the utilization of hybrid vigor. Pollen development is often accompanied by oxidative metabolism responses and tapetal programmed cell death (PCD), and deficiency in these processes could lead to male sterility. Aegilops uniaristata

A chimeric open reading frame associated with cytoplasmic male sterility in alloplasmic wheat with Triticum timopheevi mitochondria is present in several Triticum and Aegilops species, barley, and rye.

Only registered users can translate articles
Log In/Sign up
Mitochondrial DNA from Triticum timopheevi has a chimeric gene, orf256, upstream of coxI. This gene is cotranscribed with coxI in cytoplasmic male sterile plants and produces a 7-kDa protein which is not produced in fertile or fertility-restored plants. T. aestivum, the nuclear donor in sterile

Characterization of wheat Bell1-type homeobox genes in floral organs of alloplasmic lines with Aegilops crassa cytoplasm.

Only registered users can translate articles
Log In/Sign up
BACKGROUND Alloplasmic wheat lines with Aegilops crassa cytoplasm often show homeotic conversion of stamens into pistils under long-day conditions. In the pistillody-exhibiting florets, an ectopic ovule is formed within the transformed stamens, and female sterility is also observed because of

Deficiency of cox1 gene expression in wheat plants with Aegilops columnaris cytoplasm.

Only registered users can translate articles
Log In/Sign up
Wheat plants with Aegilops columnaris cytoplasm are characterized by growth inhibition and partial male sterility and show an impaired mitochondrial cytochrome c oxidase activity. We designed this study to clarify the functional relationship between this impaired cytochrome c oxidase activity and

Genetic effect of the Aegilops caudata plasmon on the manifestation of the Ae. cylindrica genome.

Only registered users can translate articles
Log In/Sign up
In the course of reconstructing Aegilops caudata from its own genome (CC) and its plasmon, which had passed half a century in common wheat (genome AABBDD), we produced alloplasmic Ae. cylindrica (genome CCDD) with the plasmon of Ae. caudata. This line, designated (caudata)-CCDD, was found to express

Genetic differentiation and post-glacial establishment of the geographical distribution in Aegilops caudata L.

Only registered users can translate articles
Log In/Sign up
Aegilops caudata L. is a diploid wild relative of wheat distributed over the north-eastern Mediterranean from Greece to northern Iraq. To elucidate the geographical differentiation pattern, 35 accessions derived from the entire distribution area were crossed with four Tester strains. Pollen

Cytogenetic analysis and mapping of leaf rust resistance in Aegilops speltoides Tausch derived bread wheat line Selection2427 carrying putative gametocidal gene(s).

Only registered users can translate articles
Log In/Sign up
Leaf rust (Puccinia triticina) is a major biotic stress affecting wheat yields worldwide. Host-plant resistance is the best method for controlling leaf rust. Aegilops speltoides is a good source of resistance against wheat rusts. To date, five Lr genes, Lr28, Lr35, Lr36, Lr47, and Lr51, have been

Alloplasmic wheats with Aegilops crassa cytoplasm which express photoperiod-sensitive homeotic transformations of anthers, show alterations in mitochondrial DNA structure and transcription.

Only registered users can translate articles
Log In/Sign up
Alloplasmic wheat. Triticum aestivum cv. Norin 26, with Aegilops crassa cytoplasm, shows photoperiod-sensitive cytoplasmic male sterility (PCMS). This alloplasmic line expresses pistillody of anthers only when grown in long-day conditions (> 15 h light). To assess the molecular basis of the PCMS, we

Genome-level identification of cell wall invertase genes in wheat for the study of drought tolerance

Only registered users can translate articles
Log In/Sign up
In wheat (Triticum aestivum L.) drought-induced pollen sterility is a major contributor to grain yield loss and is caused by the downregulation of the cell wall invertase gene IVR1. The IVR1 gene catalyses the irreversible hydrolysis of sucrose to glucose and fructose, the essential energy

Analysis of metabolic pathways related to fertility restoration and identification of fertility candidate genes associated with Aegilops kotschyi cytoplasm in wheat (Triticum aestivum L.).

Only registered users can translate articles
Log In/Sign up
Thermo-sensitive male-sterility based on Aegilops kotschyi cytoplasm (K-TCMS) plays an important role in hybrid wheat breeding. This has important possible applications in two-line hybrid wheat breeding but the genetic basis and molecular regulation mechanism related to fertility

Comparative transcriptome analysis indicates conversion of stamens into pistil-like structures in male sterile wheat (Triticum aestivum L.) with Aegilops crassa cytoplasm.

Only registered users can translate articles
Log In/Sign up
Aegilops crassa cytoplasm is an important source for investigating cytoplasmic male sterility (CMS). Moreover, the stamens of line C303A exhibit a high degree of pistillody, turning almost white. However, the molecular mechanism that underlies pistillody in C303A remains unclear.
Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge