English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

anemone/potassium

The link is saved to the clipboard
ArticlesClinical trialsPatents
Page 1 from 60 results

APETx1 from sea anemone Anthopleura elegantissima is a gating modifier peptide toxin of the human ether-a-go-go- related potassium channel.

Only registered users can translate articles
Log In/Sign up
We studied the mechanism of action and the binding site of APETx1, a peptide toxin purified from sea anemone, on the human ether-a-go-go-related gene (hERG) channel. Similar to the effects of gating modifier toxins (hanatoxin and SGTx) on the voltage-gated potassium (Kv) 2.1 channel, APETx1 shifts

Screening and cDNA cloning of Kv1 potassium channel toxins in sea anemones.

Only registered users can translate articles
Log In/Sign up
When 21 species of sea anemones were screened for Kv1 potassium channel toxins by competitive inhibition of the binding of (125)I-α-dendrotoxin to rat synaptosomal membranes, 11 species (two species of Actiniidae, one species of Hormathiidae, five species of Stichodactylidae and three species of

Chemical synthesis and characterization of ShK toxin: a potent potassium channel inhibitor from a sea anemone.

Only registered users can translate articles
Log In/Sign up
ShK-toxin, a 35 residue peptide isolated from the sea anemone Stichodactyla helianthus, was synthesized using an Fmoc strategy and successfully folded to the biologically active form containing three intramolecular disulfide bonds. The ability of synthetic ShK toxin to inhibit specific

A potassium channel toxin from the secretion of the sea anemone Bunodosoma granulifera. Isolation, amino acid sequence and biological activity.

Only registered users can translate articles
Log In/Sign up
A peptide toxin affecting potassium channels was isolated from the sea anemone Bunodosoma granulifera. It facilitates acetylcholine release at avian neuromuscular junctions, competes with dendrotoxin I, a probe for voltage-dependent potassium channels, for binding to synaptosomal membranes of rat

Primary structure of a potassium channel toxin from the sea anemone Actinia equina.

Only registered users can translate articles
Log In/Sign up
A potassium channel toxin (AeK) was isolated from the sea anemone Actinia equina by gel filtration on Sephadex G-50 and reverse-phase HPLC on TSKgel ODS-120T. AeK and alpha-dendrotoxin inhibited the binding of 125I-alpha-dendrotoxin to rat synaptosomal membranes with IC50 of 22 and 0.34 nM,

Isolation and cDNA cloning of a potassium channel peptide toxin from the sea anemone Anemonia erythraea.

Only registered users can translate articles
Log In/Sign up
A potassium channel peptide toxin (AETX K) was isolated from the sea anemone Anemonia erythraea by gel filtration on Sephadex G-50, reverse-phase HPLC on TSKgel ODS-120T and anion-exchange HPLC on Mono Q. AETX K inhibited the binding of (125)I-alpha-dendrotoxin to rat synaptosomal membranes,

Sea anemone toxins affecting potassium channels.

Only registered users can translate articles
Log In/Sign up
The great diversity of K(+) channels and their wide distribution in many tissues are associated with important functions in cardiac and neuronal excitability that are now better understood thanks to the discovery of animal toxins. During the past few decades, sea anemones have provided a variety of

Modulation of Kv3 subfamily potassium currents by the sea anemone toxin BDS: significance for CNS and biophysical studies.

Only registered users can translate articles
Log In/Sign up
Kv3 potassium channels, with their ultra-rapid gating and high activation threshold, are essential for high-frequency firing in many CNS neurons. Significantly, the Kv3.4 subunit has been implicated in the major CNS disorders Parkinson's and Alzheimer's diseases, and it is claimed that selectively

Potassium channel blockade by the sea anemone toxin ShK for the treatment of multiple sclerosis and other autoimmune diseases.

Only registered users can translate articles
Log In/Sign up
Expression of the two lymphocyte potassium channels, the voltage-gated channel Kv1.3 and the calcium activated channel IKCa1, changes during differentiation of human T cells. While IKCa1 is the functionally dominant channel in naive and "early" memory T cells, Kv1.3 is crucial for the activation of

Structure, folding and stability of a minimal homologue from Anemonia sulcata of the sea anemone potassium channel blocker ShK.

Only registered users can translate articles
Log In/Sign up
Peptide toxins elaborated by sea anemones target various ion-channel sub-types. Recent transcriptomic studies of sea anemones have identified several novel candidate peptides, some of which have cysteine frameworks identical to those of previously reported sequences. One such peptide is AsK132958,

A potassium-channel toxin from the sea anemone Bunodosoma granulifera, an inhibitor for Kv1 channels. Revision of the amino acid sequence, disulfide-bridge assignment, chemical synthesis, and biological activity.

Only registered users can translate articles
Log In/Sign up
The potassium channel toxin secreted by the sea anemone Bunodosoma granulifera (BgK) is a 37-amino-acid peptide containing three disulfide bridges. Because a synthetic peptide corresponding to the reported sequence of BgK was found not to fold properly, the sequence was determined again. The new

APETx4, a Novel Sea Anemone Toxin and a Modulator of the Cancer-Relevant Potassium Channel KV10.1.

Only registered users can translate articles
Log In/Sign up
The human ether-à-go-go channel (hEag1 or KV10.1) is a cancer-relevant voltage-gated potassium channel that is overexpressed in a majority of human tumors. Peptides that are able to selectively inhibit this channel can be lead compounds in the search for new anticancer drugs. Here, we report the

A bifunctional sea anemone peptide with Kunitz type protease and potassium channel inhibiting properties.

Only registered users can translate articles
Log In/Sign up
Sea anemone venom is a known source of interesting bioactive compounds, including peptide toxins which are invaluable tools for studying structure and function of voltage-gated potassium channels. APEKTx1 is a novel peptide isolated from the sea anemone Anthopleura elegantissima, containing 63 amino

Biochemical and electrophysiological characterization of two sea anemone type 1 potassium toxins from a geographically distant population of Bunodosoma caissarum.

Only registered users can translate articles
Log In/Sign up
Sea anemone (Cnidaria, Anthozoa) venom is an important source of bioactive compounds used as tools to study the pharmacology and structure-function of voltage-gated K+ channels (KV). These neurotoxins can be divided into four different types, according to their structure and mode of action. In this

Structural conservation of the pores of calcium-activated and voltage-gated potassium channels determined by a sea anemone toxin.

Only registered users can translate articles
Log In/Sign up
The structurally defined sea anemone peptide toxins ShK and BgK potently block the intermediate conductance, Ca(2+)-activated potassium channel IKCa1, a well recognized therapeutic target present in erythrocytes, human T-lymphocytes, and the colon. The well characterized voltage-gated Kv1.3 channel
Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge