English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

beta amylase/arachis hypogaea

The link is saved to the clipboard
ArticlesClinical trialsPatents
4 results

An antioxidant rich novel β-amylase from peanuts (Arachis hypogaea): Its purification, biochemical characterization and potential applications.

Only registered users can translate articles
Log In/Sign up
β-Amylase from un-germinated seeds of peanut (Arachis hypogaea) was purified to apparent electrophoretic homogeneity with final purification fold of 205 and specific activity of 361μmol/min/mg protein. The enzyme was purified employing simple purification techniques for biochemical characterization.

Enzymatic hydrolysis of native granular starches by a new β-amylase from peanut (Arachis hypogaea).

Only registered users can translate articles
Log In/Sign up
The present work describes efficient hydrolysis of native starch by a novel β-amylase from peanut (Arachis hypogaea). The Dextrose Equivalent value, which is a measure of starch hydrolysis, for potato and corn starch increased significantly by 40% and 10%, respectively, releasing maltose. Scanning

Purification to homogeneity and characterization of a 1,3-beta-glucan (callose) synthase from germinating Arachis hypogaea cotyledons.

Only registered users can translate articles
Log In/Sign up
A 1,3-beta-D-glucan (callose) synthase (CS) from a plasma membrane fraction of germinating peanut (Arachis hypogaea L.) cotyledons has been purified to apparent homogeneity as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), amino-terminal analysis, and the Western

Covalent immobilization of peanut β-amylase for producing industrial nano-biocatalysts: A comparative study of kinetics, stability and reusability of the immobilized enzyme.

Only registered users can translate articles
Log In/Sign up
Stability of enzymes is an important parameter for their industrial applicability. Here, we report successful immobilization of β-amylase (bamyl) from peanut (Arachis hypogaea) onto Graphene oxide-carbon nanotube composite (GO-CNT), Graphene oxide nanosheets (GO) and Iron oxide nanoparticles
Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge