English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

cinnamic acid/potato

The link is saved to the clipboard
ArticlesClinical trialsPatents
Page 1 from 35 results

Studies on the induction of cinnamic acid 4-hydroxylase in potato tuber.

Only registered users can translate articles
Log In/Sign up
The change in activity of cinnamic acid 4-hydroxylase (CA4H) in potato parenchyma tissue exposed to various conditions has been examined. Maximum induction of CA4H activity was obtained at 18 hr of incubation. Though CA4H induction can occur in dark, over 100% increase in enzyme activity was

Phenylalanine ammonia-lyase and cinnamic acid 4-hydroxylase: Product repression of the level of enzyme activity in potato tuber discs.

Only registered users can translate articles
Log In/Sign up
Exogenous supplies of phenylalanne, cinnamic acid and p-coumaric acid can inhibit the appearance of phenylalanine ammonia-lyase (PAL, E.C. 4.3.1.5) activity in potato tuber discs, and exogenous supplies of cinnamic acid and p-coumaric acid can inhibit the appearance of cinnamic acid 4-hydroxylase

Studies on cinnamic acid-4-hydroxylase from wounded potato tissue: isolation and characterization of cinnamic acid-4-hydroxylase activation factor.

Only registered users can translate articles
Log In/Sign up
Cinnamic acid-4-hydroxylase activation factor has been found to be located in the supernatant fraction of wounded potato tissue homogenate in phosphate buffer. The factor has been purified to homogeneity as judged by SDS polyacrylamide gel electrophoresis, by heat treatment on boiling water-bath for

Identification of a non-microsomal cinnamic acid 4-hydroxylase from potato tuber (S. tuberosum) and its partial purification.

Only registered users can translate articles
Log In/Sign up
The cytoplasmic localisation of cinnamic acid 4-hydroxylase (CA4H) has been shown by isolation and subcellular fractionation of the enzyme in Hepes buffer. The enzyme was purified by ammonium sulphate fractionation followed by AcA-34 molecular sieve chromatography. The enzyme existed as a high

Phenylalanine ammonia-lyase and cinnamic acid 4-hydroxylase: Characterisation of the concomitant changes in enzyme activities in illuminated potato tuber discs.

Only registered users can translate articles
Log In/Sign up
Phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) and cinnamic acid 4-hydroxylase (CA4H, EC 1.14.13.11) undergo concomitant increases in activity after a 2 h lag following disc preparation and illumination. The increases in PAL and CA4H activity can be inhibited by actinomycin-D, cordycepin and

Biophysical and enzymological studies upon the interaction of trans-cinnamic acid with higher plant microsomal cytochromes P-450.

Only registered users can translate articles
Log In/Sign up
The interaction of trans-cinnamic acid with the cytochrome P-450 of microsomes derived from washed potato slices has been studied. The washing process increased the specific content of microsomal electron transport components and hence provided a useful material in which to study the interaction.

Trans-cinnamic acid and Xenorhabdus szentirmaii metabolites synergize the potency of some commercial fungicides.

Only registered users can translate articles
Log In/Sign up
Development of novel approaches for the control of fungal phytopathogens is desirable. In this study we hypothesized that the combination of commercial fungicides with certain enhancing agents could result in synergistic levels of control. Prior research has indicated that trans-cinnamic-acid (TCA),

The Plant Pathogenic Bacterium Streptomyces scabies Degrades the Aromatic Components of Potato Periderm via the β-Ketoadipate Pathway.

Only registered users can translate articles
Log In/Sign up
The outer potato periderm layer consists of dead suberized cells. Suberin, a protective biopolymer, is made of a polyaliphatic portion covalently linked to polyaromatic moieties. Evidence accumulates that Streptomyces scabies, the main causal agent of potato common scab, can degrade the

Synthesis of maltodextrin-grafted-cinnamic acid and evaluation on its ability to stabilize anthocyanins via microencapsulation.

Only registered users can translate articles
Log In/Sign up
In this work, maltodextrin-grafted-cinnamic acid (MD-g-CA) was synthesised and used as wall material to improve the stability of purple sweet potato anthocyanins (PSPa) via microencapsualtion. MD-g-CA was prepared through esterification in a two-step convenient synthesis procedure and characterised

Three new pentasaccharide resin glycosides from the roots of sweet potato (Ipomoea batatas).

Only registered users can translate articles
Log In/Sign up
Three new pentasaccharide resin glycosides, batatosides III-V (1-3), were isolated from the roots of Sweet potato (Ipomoea batatas). Saponification of the crude resin glycoside mixture yielded substituents and simonic acid B. The structures of the isolated compounds (1-3) were established through

Partial purification and characterization of UDPG:t-cinnamate glucosyltransferase in the root of sweet potato, Ipomoea batatas Lam.

Only registered users can translate articles
Log In/Sign up
Previously, we isolated t-cinnamoyl-D-glucose as a possible intermediate in chlorogenic acid biosynthesis from sweet potato root. The enzyme which catalyzes the formation of t-cinnamoyl-D-glucose has been purified 539-fold from sweet potato root (Ipomoea batatas Lam.) and characterized. It required

Properties of a Mixed Function Oxygenase Catalyzing Ipomeamarone 15-Hydroxylation in Microsomes from Cut-Injured and Ceratocystis fimbriata-Infected Sweet Potato Root Tissues.

Only registered users can translate articles
Log In/Sign up
Ipomeamarone 15-hydroxylase activity was found in a microsomal fraction from cut-injured and Ceratocystis fimbriata-infected sweet potato (Ipomoea batatas Lam. cv. Norin No. 1) root tissues and its optimum pH was 8.0. The enzyme reaction required O(2) and NADPH. The K(m) values calculated for

Studies on chlorogenic Acid biosynthesis in sweet potato root tissue in special reference to the isolation of a chlorogenic Acid intermediate.

Only registered users can translate articles
Log In/Sign up
Marked polyphenol production takes place in root tissue of sweet potato, Ipomoea batatas Lam. cv. Norin 1, in response to slicing. A possible intermediate, tentatively termed compound V, of chlorogenic acid biosynthesis was isolated from the root tissue administrated with t-cinnamic acid-2-(14)C.

Polarity of Production of Polyphenols and Development of Various Enzyme Activities in Cut-injured Sweet Potato Root Tissue.

Only registered users can translate articles
Log In/Sign up
Investigation of polyphenol production in cut-injured sweet potato (Ipomoea batatas Lam. cv. Kokei 14) roots by histochemical and quantitative methods showed that polyphenols were produced in striking amounts in the proximal side of the tissue pieces (2 cm thick), but only in small amounts in cells

Batatins I and II, ester-type dimers of acylated pentasaccharides from the resin glycosides of sweet potato.

Only registered users can translate articles
Log In/Sign up
Batatins I (1) and II (2), two ester-type dimers of acylated pentasaccharides, have been isolated by recycling HPLC from the hexane-soluble extract of sweet potato (Ipomoea batatas var. batatas). The structures were elucidated by a combination of high-resolution NMR spectroscopy and mass
Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge