English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

cyanogenic glucoside/arabidopsis thaliana

The link is saved to the clipboard
ArticlesClinical trialsPatents
11 results

Consequences of transferring three sorghum genes for secondary metabolite (cyanogenic glucoside) biosynthesis to grapevine hairy roots.

Only registered users can translate articles
Log In/Sign up
A multigenic trait (biosynthesis of the secondary metabolite, dhurrin cyanogenic glucoside) was engineered de novo in grapevine (Vitis vinifera L.). This follows a recent report of transfer of the same trait to Arabidopsis (Arabidopsis thaliana) using three genetic sequences from sorghum (Sorghum

The bifurcation of the cyanogenic glucoside and glucosinolate biosynthetic pathways.

Only registered users can translate articles
Log In/Sign up
The biosynthetic pathway for the cyanogenic glucoside dhurrin in sorghum has previously been shown to involve the sequential production of (E)- and (Z)-p-hydroxyphenylacetaldoxime. In this study we used microsomes prepared from wild-type and mutant sorghum or transiently transformed Nicotiana

Characterization of transgenic Arabidopsis thaliana with metabolically engineered high levels of p-hydroxybenzylglucosinolate.

Only registered users can translate articles
Log In/Sign up
The cytochrome P450 CYP79A1 catalyzes the conversion of L-tyrosine to p-hydroxyphenylacetaldoxime, the first step in the biosynthetic pathway of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. We have demonstrated that introduction of CYP79A1 into Arabidopsis thaliana (L.) Heynh.

Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. Catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate.

Only registered users can translate articles
Log In/Sign up
Glucosinolates are natural plant products gaining increasing interest as cancer-preventing agents and crop protectants. Similar to cyanogenic glucosides, glucosinolates are derived from amino acids and have aldoximes as intermediates. We report cloning and characterization of cytochrome P450 CYP79A2

Resistance to an herbivore through engineered cyanogenic glucoside synthesis.

Only registered users can translate articles
Log In/Sign up
The entire pathway for synthesis of the tyrosine-derived cyanogenic glucoside dhurrin has been transferred from Sorghum bicolor to Arabidopsis thaliana. Here, we document that genetically engineered plants are able to synthesize and store large amounts of new natural products. The presence of

A new cyanogenic metabolite in Arabidopsis required for inducible pathogen defence.

Only registered users can translate articles
Log In/Sign up
Thousands of putative biosynthetic genes in Arabidopsis thaliana have no known function, which suggests that there are numerous molecules contributing to plant fitness that have not yet been discovered. Prime among these uncharacterized genes are cytochromes P450 upregulated in response to

Metabolic engineering of p-hydroxybenzylglucosinolate in Arabidopsis by expression of the cyanogenic CYP79A1 from Sorghum bicolor.

Only registered users can translate articles
Log In/Sign up
Glucosinolates are natural products in cruciferous plants, including Arabidopsis thaliana. CYP79A1 is the cytochrome P450 catalysing the conversion of tyrosine to p-hydroxyphenylacetaldoxime in the biosynthesis of the cyanogenic glucoside dhurrin in sorghum. Both glucosinolates and cyanogenic

Predictive metabolic engineering in plants: still full of surprises.

Only registered users can translate articles
Log In/Sign up
In an important recent paper Kristensen et al. address a question of fundamental importance in plant biotechnology: how are metabolic pathways affected upon introduction of a transgene? Analysis of the transcriptome and metabolome of Arabidopsis thaliana engineered to produce the cyanogenic

Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome.

Only registered users can translate articles
Log In/Sign up
Focused and nontargeted approaches were used to assess the impact associated with introduction of new high-flux pathways in Arabidopsis thaliana by genetic engineering. Transgenic A. thaliana plants expressing the entire biosynthetic pathway for the tyrosine-derived cyanogenic glucoside dhurrin as

CYP83b1 is the oxime-metabolizing enzyme in the glucosinolate pathway in Arabidopsis.

Only registered users can translate articles
Log In/Sign up
CYP83B1 from Arabidopsis thaliana has been identified as the oxime-metabolizing enzyme in the biosynthetic pathway of glucosinolates. Biosynthetically active microsomes isolated from Sinapis alba converted p-hydroxyphenylacetaldoxime and cysteine into S-alkylated p-hydroxyphenylacetothiohydroximate,

Metabolon formation in dhurrin biosynthesis.

Only registered users can translate articles
Log In/Sign up
Synthesis of the tyrosine derived cyanogenic glucoside dhurrin in Sorghum bicolor is catalyzed by two multifunctional, membrane bound cytochromes P450, CYP79A1 and CYP71E1, and a soluble UDPG-glucosyltransferase, UGT85B1 (Tattersall, D.B., Bak, S., Jones, P.R., Olsen, C.E., Nielsen, J.K., Hansen,
Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge