English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

flaveria ramosissima/glutathione

The link is saved to the clipboard
ArticlesClinical trialsPatents
4 results

Activation of NADP-malate dehydrogenase in C3 plants by reduced glutathione.

Only registered users can translate articles
Log In/Sign up
NADP-malate dehydrogenase extracted from darkened leaves of the C3 plants pea, barley, wheat and spinach was activated by reduced glutathione, a monothiol, as well as by dithiothreitol (DTT). However, in the C4 plants maize and Flaveria trinervia, only dithiothreitol could effectively activate the

Assimilatory sulfate reduction in C(3), C(3)-C(4), and C(4) species of Flaveria.

Only registered users can translate articles
Log In/Sign up
The activity of the enzymes catalyzing the first two steps of sulfate assimilation, ATP sulfurylase and adenosine 5'-phosphosulfate reductase (APR), are confined to bundle sheath cells in several C(4) monocot species. With the aim to analyze the molecular basis of this distribution and to determine

Strategies of ROS regulation and antioxidant defense during transition from C₃ to C₄ photosynthesis in the genus Flaveria under PEG-induced osmotic stress.

Only registered users can translate articles
Log In/Sign up
In the present study, we aimed to elucidate how strategies of reactive oxygen species (ROS) regulation and the antioxidant defense system changed during transition from C₃ to C₄ photosynthesis, by using the model genus Flaveria, which contains species belonging to different steps in C₄ evolution.

Sulfate Metabolism in C4 Flaveria Species Is Controlled by the Root and Connected to Serine Biosynthesis.

Only registered users can translate articles
Log In/Sign up
The evolution of C4 photosynthesis led to an increase in carbon assimilation rates and plant growth compared to C3 photosynthetic plants. This enhanced plant growth, in turn, affects the requirement for soil-derived mineral nutrients. However, mineral plant nutrition has scarcely been considered in
Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge