The present study investigates the role of Chlorella sp. in the mitigation of arsenic (iAs) induced toxicity in Oryza sativa L. The study shows, co-culture of rice seedlings with Chlorella sp. reduced the iAs accumulation, simultaneously improving the growth of seedlings under iAs treatments. While
A glutathione S-transferase (GST) related to the phi (F) class of enzymes only found in plants has been cloned from the Oryza sativa. The GST cDNA was cloned by PCR using oligonucleotide primers based on the OsGSTF5 (GenBank Accession No. AF309382) sequences. The cDNA was composed of a 669-bp open
A cDNA encoding an Oryza sativaglutathione peroxidase, OsGPX1, was isolated and characterized. OsGPX1 encodes a protein of 168 amino acids with a predicted molecular mass of approximately 18.5 kDa. The protein has 92% identity to a GPX of Zea mays, but only 65% identity to rice PHGPX. The deduced
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is an unique antioxidant enzyme that directly reduces lipid hydroperoxides in biomembranes. In the present work, the entire encoding region for Oryza sativa PHGPx was expressed in Escherichia coli M15, and the purified fusion protein showed a
GSTZs [Zeta class GSTs (glutathione transferases)] are multifunctional enzymes that belong to a highly conserved subfamily of soluble GSTs found in species ranging from fungi and plants to animals. GSTZs are known to function as MAAIs [MAA (maleylacetoacetate) isomerases], which play a role in
Arsenic is a carcinogenic metalloid, exists in two important oxidation states-arsenate (As-V) and arsenite (As-III). The influence of arsenate with or without silicate on the growth and thiol metabolism in rice (Oryza sativa L. cv. MTU-1010) seedlings were investigated. Arsenate was more toxic for
We have isolated a cDNA (RGRC2) encoding glutathione reductase (GR) from rice (Oryza sativa L.). The comparison of deduced amino acid sequences from RGRC2 and other plant GR cDNAs indicated that RGRC2 encodes a putative cytosolic isoform. The recombinant RGRC2 protein had enzymatic properties
Glutathione reductase (GR, E.C. 1.6.4.2) is an important enzyme that reduces glutathione disulfide (GSSG) to a sulfydryl form (GSH) in the presence of an NADPH-dependent system. This is a critical antioxidant mechanism. Owing to the significance of GR, this enzyme has been examined in a number of
Nitrogen (N) forms not only affect cadmium (Cd) accumulation in plants, but also affect plant resistance to Cd toxicity. However, few researches have been reported underlying the mechanism of the relationship between nitrogen forms and plant resistance under Cd exposure. Here, we explored the
Water deficit for rice is a worldwide concern, and to produce drought-tolerant varieties, it is essential to elucidate molecular mechanisms associated with water deficit tolerance. In the present study, we investigated the differential responses of nonenzymatic antioxidants ascorbate (AsA),
BACKGROUND
Plant glutathione S-transferases (GSTs, EC 2.5.1.18) are multifunctional enzymes involved in heavy metal cellular detoxification by conjugating the tripeptide (g-Glu-Cys-Gly) glutathione to heavy metals. Previous studies demonstrated that individual rice GSTs were differentially induced
With a specific focus on rice self-defense response(s), the effects of global signaling molecules, jasmonic acid (JA), salicylic acid (SA), abscisic acid (ABA), and ethylene (using the ethylene generator, ethephon), and protein phosphatase (PP) inhibitors, cantharidin and endothall on expression of
The classical phase II detoxification glutathione transferases (GSTs) are key metabolic enzymes that catalyze the conjugation of glutathione to various electrophilic compounds. A tau class GST gene (OsGSTU17) was cloned from rice, which encodes a protein of 223 amino acid residues with a calculated
GlutathioneS-transferases (GSTs)-an especially plant-specific tau class of GSTs-are key enzymes involved in biotic and abiotic stress responses. To improve the stress resistance of crops via the genetic modification of GSTs, we predicted the amino acids present in the GSH binding site
A cDNA encoding putative phospholipid hydroperoxide glutathione peroxidase (PHGPX) was isolated from rice using rapid amplification of cDNA ends. This cDNA, designated ricPHGPX, includes an open reading frame encoding a protein of 169 amino acids which shares about 60% and 50% amino acid sequence
The most complete medicinal herbs database backed by science
Works in 55 languages
Herbal cures backed by science
Herbs recognition by image
Interactive GPS map - tag herbs on location (coming soon)
Read scientific publications related to your search
Search medicinal herbs by their effects
Organize your interests and stay up do date with the news research, clinical trials and patents
Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against. *All information is based on published scientific research