English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

isorhamnetin/glycine max

The link is saved to the clipboard
ArticlesClinical trialsPatents
5 results

Synthesis of Isorhamnetin-3-O-Rhamnoside by a Three-Enzyme (Rhamnosyltransferase, Glycine Max Sucrose Synthase, UDP-Rhamnose Synthase) Cascade Using a UDP-Rhamnose Regeneration System.

Only registered users can translate articles
Log In/Sign up
Isorhamnetin-3-O-rhamnoside was synthesized by a highly efficient three-enzyme (rhamnosyltransferase, glycine max sucrose synthase and uridine diphosphate (UDP)-rhamnose synthase) cascade using a UDP-rhamnose regeneration system. The rhamnosyltransferase gene (78D1) from Arabidopsis

Identification of an UDP-glucose: Flavonol 3-O-glucosyl-transferase from cell suspension cultures of soybean (Glycine max L.).

Only registered users can translate articles
Log In/Sign up
A glucosyltransferase, which catalyses the glucosylation of flavonols, using uridine diphosphate-D-glucose as glucose donor, has been isolated and purified about 5-10 fold from cell suspension cultures of soybean (Glycine max L., var. Mandarin). The pH optimum for this reaction was ca. 8.5 in

Characterization of an O-methyltransferase from soybean.

Only registered users can translate articles
Log In/Sign up
O-methyltransferases (OMTs) catalyze the transfer of a methyl group from S-adenosine-L-methionine to a hydroxyl group of an acceptor molecule to form methyl ether derivatives and can modify the basic backbone of a secondary metabolite. A new O-methyltransferase, SOMT-9, was cloned from Glycine max

Difference in chilling-induced flavonoid profiles, antioxidant activity and chilling tolerance between soybean near-isogenic lines for the pubescence color gene.

Only registered users can translate articles
Log In/Sign up
Chilling tolerance is an important trait of soybeans [Glycine max (L.) Merr.] produced in cool climates. We previously isolated a soybean flavonoid 3' hydroxylase (F3'H) gene corresponding to the T locus, which controls pubescence and seed coat color. A genetic link between the T gene and chilling

Flavonoid and isoflavonoid distribution in developing soybean seedling tissues and in seed and root exudates.

Only registered users can translate articles
Log In/Sign up
The distribution of flavonoids, isoflavonoids, and their conjugates in developing soybean (Glycine max L.) seedling organs and in root and seed exudates has been examined. Conjugates of the isoflavones daidzein and genistein are major metabolites in all embryonic organs within the dry seed and in
Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge