English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

lewy body disease/scopolamine

The link is saved to the clipboard
ArticlesClinical trialsPatents
7 results

Scopolamine and Medial Frontal Stimulus-Processing during Interval Timing.

Only registered users can translate articles
Log In/Sign up
Neurodegenerative diseases such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and Alzheimer's disease (AD) involve loss of cholinergic neurons in the basal forebrain. Here, we investigate how cholinergic dysfunction impacts the frontal cortex during interval timing, a process that

TAK-071, a muscarinic M1 receptor positive allosteric modulator, attenuates scopolamine-induced quantitative electroencephalogram power spectral changes in cynomolgus monkeys.

Only registered users can translate articles
Log In/Sign up
Activation of the muscarinic M1 receptor is a promising approach to improve cognitive deficits associated with cholinergic dysfunction in Alzheimer's disease, dementia with Lewy bodies, and schizophrenia. TAK-071 is an M1-selective positive allosteric modulator that improves cognitive deficits

Bifunctional drug derivatives of MAO-B inhibitor rasagiline and iron chelator VK-28 as a more effective approach to treatment of brain ageing and ageing neurodegenerative diseases.

Only registered users can translate articles
Log In/Sign up
Degeneration of nigrostriatal dopamine neurons and cholinergic cortical neurones are the main pathological features of Parkinson's disease (PD) and for the cognitive deficit in dementia of the Alzheimer' type (AD) and in dementia with Lewy bodies (DLB), respectively. Many PD and DLB subjects have

In Vivo Pharmacological Comparison of TAK-071, a Positive Allosteric Modulator of Muscarinic M1 Receptor, and Xanomeline, an Agonist of Muscarinic M1/M4 Receptor, in Rodents.

Only registered users can translate articles
Log In/Sign up
Activation of the M1 muscarinic acetylcholine receptor (M1R) may be an effective therapeutic approach for Alzheimer's disease (AD), dementia with Lewy bodies, and schizophrenia. Previously, the M1R/M4R agonist xanomeline was shown to improve cognitive

The neurochemical and behavioral effects of the novel cholinesterase-monoamine oxidase inhibitor, ladostigil, in response to L-dopa and L-tryptophan, in rats.

Only registered users can translate articles
Log In/Sign up
The novel drugs, ladostigil (TV3326) and TV3279, are R and S isomers, respectively, derived from a combination of the carbamate cholinesterase (ChE) inhibitor, rivastigmine, and the pharmacophore of the monoamine oxidase (MAO) B inhibitor, rasagiline. They were developed for the treatment of

T-495, a novel low cooperative M1 receptor positive allosteric modulator, improves memory deficits associated with cholinergic dysfunction and is characterized by low gastrointestinal side effect risk.

Only registered users can translate articles
Log In/Sign up
M1 muscarinic acetylcholine receptor (M1 R) activation can be a new therapeutic approach for the treatment of cognitive deficits associated with cholinergic hypofunction. However, M1 R activation causes gastrointestinal (GI) side effects in animals. We previously

Ladostigil: a novel multimodal neuroprotective drug with cholinesterase and brain-selective monoamine oxidase inhibitory activities for Alzheimer's disease treatment.

Only registered users can translate articles
Log In/Sign up
Ladostigil [(N-propargyl-(3R) aminoindan-5yl)-ethyl methyl carbamate] is a dual acetylcholine-butyrylcholineesterase and brain selective monoamine oxidase (MAO)-A and -B inhibitor in vivo (with little or no MAO inhibitory effect in the liver and small intestine), intended for the treatment of
Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge