English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

luteolinidin/sorghum

The link is saved to the clipboard
ArticlesClinical trialsPatents
Page 1 from 22 results

Host specificity of Sporisorium reilianum is tightly linked to generation of the phytoalexin luteolinidin by Sorghum bicolor.

Only registered users can translate articles
Log In/Sign up
The smut fungus Sporisorium reilianum occurs in two varieties (S. reilianum f. sp. reilianum and S. reilianum f. sp. zeae) that cause head smut disease on sorghum and maize, respectively. Prior to plant infection, compatible haploid sporidia of S. reilianum fuse to form infectious dikaryotic hyphae

Red card for pathogens: phytoalexins in sorghum and maize.

Only registered users can translate articles
Log In/Sign up
Cereal crop plants such as maize and sorghum are constantly being attacked by a great variety of pathogens that cause large economic losses. Plants protect themselves against pathogens by synthesizing antimicrobial compounds, which include phytoalexins. In this review we summarize the current

Antioxidant properties of 3-deoxyanthocyanidins and polyphenolic extracts from Côte d'Ivoire's red and white sorghums assessed by ORAC and in vitro LDL oxidisability tests.

Only registered users can translate articles
Log In/Sign up
Red sorghum is a source of phenolic compounds (PCs), including 3-deoxyanthocyanidins that may protect against oxidative stress related disease such as atherosclerosis. HPLC was used to characterise and quantify PCs extracted from red or white sorghum whole grain flour. Antioxidant activity was

Phenolic profile and content of sorghum grains under different irrigation managements.

Only registered users can translate articles
Log In/Sign up
Sorghum grain is widely consumed in Sub-Saharan Africa and Asia, as a staple food due to its adaptation to harsh environments. The impact of irrigation regime: full irrigation (100%); deficit irrigation (50%); and severe deficit irrigation (25%) on phenolic profile and content of six sorghum grain

Mass Spectral Characterization and UPLC Quantitation of 3-Deoxyanthocyanidins in Sorghum bicolor Varietals.

Only registered users can translate articles
Log In/Sign up
A quantitative ultra-performance LC (UPLC) method was developed and validated to successfully separate, identify, and quantitate the major polyphenolic compounds present in different varieties of sorghum (Sorghum bicolor) feedstock. The method was linear from 3.2 to 320 ppm, with an r2 of 0.99999

In vitro activity of Sorghum bicolor extracts, 3-deoxyanthocyanidins, against Toxoplasma gondii.

Only registered users can translate articles
Log In/Sign up
We investigated dried red leaf extracts of Sorghum bicolor for activity against Toxoplasma gondii tachyzoites. S. bicolor red leaf extracts were obtained by bioassay-guided fractionation using ethanol and ethyl acetate as solvents. Analysis of the crude and fractionated extracts from S. bicolor

Regulatory Mechanisms in Anthocyanin Biosynthesis in First Internodes of Sorghum vulgare: Effect of Presumed Inhibitors of Protein Synthesis.

Only registered users can translate articles
Log In/Sign up
There was a 6 to 24-hour lag in the production of anthocyanins in the light after excision of 4-day-old etiolated internodes of Sorghum vulgare variety Wheatland milo. In internodes infiltrated with water, apigeninidin was formed first at 12 to 24 hours and continued to be produced slowly.

Relationships between the development of adventitious roots and the biosynthesis of anthocyanins in first internodes of sorghum.

Only registered users can translate articles
Log In/Sign up
The initiation and subsequent growth of adventitious roots in excised first internodes of Sorghum vulgare var. Wheatland milo were studied to determine the effect of these processes on anthocyanin biosyntheses. Segmentation of the internodes inhibited both adventitious root growth and accumulation

Mutagenesis breeding for increased 3-deoxyanthocyanidin accumulation in leaves of Sorghum bicolor (L.) Moench: a source of natural food pigment.

Only registered users can translate articles
Log In/Sign up
Natural food colorants with functional properties are of increasing interest. Prior papers indicate the chemical suitability of sorghum leaf 3-deoxyanthocyanidins as natural food colorants. Via mutagenesis-assisted breeding, a sorghum variety that greatly overaccumulates 3-deoxyanthocyanidins of

Quantitative analysis of anticancer 3-deoxyanthocyanidins in infected sorghum seedlings.

Only registered users can translate articles
Log In/Sign up
3-Deoxyanthocyanidins are structurally related to the anthocyanin pigments, which are popular as health-promoting phytochemicals. Here, it is demonstrated that the 3-deoxyanthocyanidins are more cytotoxic on human cancer cells than the 3-hydroxylated anthocyanidin analogues. At 200 microM

The Dermal Layer of Sweet Sorghum (Sorghum bicolor) Stalk, a Byproduct of Biofuel Production and Source of Unique 3-Deoxyanthocyanidins, Has More Antiproliferative and Proapoptotic Activity than the Pith in p53 Variants of HCT116 and Colon Cancer Stem Cells.

Only registered users can translate articles
Log In/Sign up
There is a growing interest in the utilization of sweet sorghum as a renewable resource for biofuels. During the biofuel production process, large quantities of biomass are generated, creating a rich source of bioactive compounds. However, knowledge of sweet sorghum stalk is lacking. We measured the

Expression of Flavone Synthase II and Flavonoid 3'-Hydroxylase Is Associated with Color Variation in Tan-Colored Injured Leaves of Sorghum.

Only registered users can translate articles
Log In/Sign up
Sorghum (Sorghum bicolor L. Moench) exhibits various color changes in injured leaves in response to cutting stress. Here, we aimed to identify key genes for the light brown and dark brown color variations in tan-colored injured leaves of sorghum. For this purpose, sorghum M36001 (light brown injured

Phytoalexin synthesis by the sorghum mesocotyl in response to infection by pathogenic and nonpathogenic fungi.

Only registered users can translate articles
Log In/Sign up
Infection of the sorghum mesocotyl by Helminthosporium maydis (a nonpathogen) and Colletotrichum graminicola (a pathogen) resulted in the rapid accumulation of a pigment complex by two sorghum cultivars. The components of the complex were fungitoxic. The principal compounds have been identified as

The Sorghum Gene for Leaf Color Changes upon Wounding (P) Encodes a Flavanone 4-Reductase in the 3-Deoxyanthocyanidin Biosynthesis Pathway.

Only registered users can translate articles
Log In/Sign up
Upon wounding or pathogen invasion, leaves of sorghum [Sorghum bicolor (L.) Moench] plants with the P gene turn purple, whereas leaves with the recessive allele turn brown or tan. This purple phenotype is determined by the production of two 3-deoxyanthocyanidins, apigeninidin and luteolinidin, which

A sorghum MYB transcription factor induces 3-deoxyanthocyanidins and enhances resistance against leaf blights in maize.

Only registered users can translate articles
Log In/Sign up
Sorghum responds to the ingress of the fungal pathogen Colletotrichum sublineolum through the biosynthesis of 3-deoxyanthocyanidin phytoalexins at the site of primary infection. Biosynthesis of 3-deoxyanthocyanidins in sorghum requires a MYB transcription factor encoded by yellow seed1 (y1), an
Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge