English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

pectic polysaccharide/arabidopsis

The link is saved to the clipboard
ArticlesClinical trialsPatents
Page 1 from 47 results

Biochemical and immunohistochemical analysis of pectic polysaccharides in the cell walls of Arabidopsis mutant QUASIMODO 1 suspension-cultured cells: implications for cell adhesion.

Only registered users can translate articles
Log In/Sign up
Mutation in the Arabidopsis thaliana QUASIMODO 1 gene (QUA1), which encodes a putative glycosyltransferase, reduces cell wall pectin content and cell adhesion. Suspension-cultured calli were generated from roots of wild-type (wt) and qua1-1 A. thaliana plants. The altered cell adhesion phenotype of

Enzymatic fingerprinting of Arabidopsis pectic polysaccharides using polysaccharide analysis by carbohydrate gel electrophoresis (PACE).

Only registered users can translate articles
Log In/Sign up
Plant cell wall polysaccharides vary in quantity and structure between different organs and during development. However, quantitative analysis of individual polysaccharides remains challenging, and relatively little is known about any such variation in polysaccharides in organs of the model plant

l-Galactose replaces l-fucose in the pectic polysaccharide rhamnogalacturonan II synthesized by the l-fucose-deficient mur1 Arabidopsis mutant.

Only registered users can translate articles
Log In/Sign up
Arabidopsis thaliana mur1 is a dwarf mutant with altered cell-wall properties, in which l-fucose is partially replaced by l-galactose in the xyloglucan and glycoproteins. We found that the mur1 mutation also affects the primary structure of the pectic polysaccharide rhamnogalacturonan II (RG-II). In

Multidimensional solid-state NMR studies of the structure and dynamics of pectic polysaccharides in uniformly 13C-labeled Arabidopsis primary cell walls.

Only registered users can translate articles
Log In/Sign up
Plant cell wall (CW) polysaccharides are responsible for the mechanical strength and growth of plant cells; however, the high-resolution structure and dynamics of the CW polysaccharides are still poorly understood because of the insoluble nature of these molecules. Here, we use 2D and 3D

In-situ analysis of pectic polysaccharides in seed mucilage and at the root surface of Arabidopsis thaliana.

Only registered users can translate articles
Log In/Sign up
Pectic polysaccharides are a complex set of macromolecules of the primary cell wall matrix with distinct structural domains. The biosynthesis, organisation and function of these domains within cell wall matrices are poorly understood. An immersion immunofluorescence labelling technique was developed

Down-regulation of UDP-glucuronic acid biosynthesis leads to swollen plant cell walls and severe developmental defects associated with changes in pectic polysaccharides.

Only registered users can translate articles
Log In/Sign up
UDP-glucose dehydrogenase (UGD) plays a key role in the nucleotide sugar biosynthetic pathway, as its product UDP-glucuronic acid is the common precursor for arabinose, xylose, galacturonic acid, and apiose residues found in the cell wall. In this study we characterize an Arabidopsis thaliana double

Tetrad pollen formation in quartet mutants of Arabidopsis thaliana is associated with persistence of pectic polysaccharides of the pollen mother cell wall.

Only registered users can translate articles
Log In/Sign up
The quartet (qrt) mutants of Arabidopsis thaliana produce tetrad pollen in which microspores fail to separate during pollen development. Because the amount of callose deposition between microspores is correlated with tetrad pollen formation in other species, and because pectin is implicated as

Botrytis cinerea mutants deficient in D-galacturonic acid catabolism have a perturbed virulence on Nicotiana benthamiana and Arabidopsis, but not on tomato.

Only registered users can translate articles
Log In/Sign up
D-Galacturonic acid is the most abundant monosaccharide component of pectic polysaccharides that comprise a significant part of most plant cell walls. Therefore, it is potentially an important nutritional factor for Botrytis cinerea when it grows in and through plant cell walls. The d-galacturonic

The Three Members of the Arabidopsis thaliana Glycosyltransferase Family 92 are Functional β-1,4-Galactan Synthases.

Only registered users can translate articles
Log In/Sign up
Pectin is a major component of primary cell walls and performs a plethora of functions crucial for plant growth, development and plant-defense responses. Despite the importance of pectic polysaccharides their biosynthesis is poorly understood. Several genes have been implicated in pectin

Quantitative trait loci analysis of primary cell wall composition in Arabidopsis.

Only registered users can translate articles
Log In/Sign up
Quantitative trait loci (QTL) analysis was used to identify genes underlying natural variation in primary cell wall composition in Arabidopsis (Arabidopsis thaliana). The cell walls of dark-grown seedlings of a Bay-0 x Shahdara recombinant inbred line population were analyzed using three

Altered pectin composition in primary cell walls of korrigan, a dwarf mutant of Arabidopsis deficient in a membrane-bound endo-1,4-beta-glucanase.

Only registered users can translate articles
Log In/Sign up
Korrigan (kor) is a dwarf mutant of Arabidopsis thaliana (L.) Heynh. that is deficient in a membrane-bound endo-1,4-beta-glucanase. The effect of the mutation on the pectin network has been studied in kor by microscopical techniques associated with various probes specific for different classes of

Synthesis and immunological properties of a tetrasaccharide portion of the B side chain of rhamnogalacturonan II (RG-II).

Only registered users can translate articles
Log In/Sign up
A highly convergent strategy was used for the synthesis of a tetrasaccharide [3-aminopropyl beta-L-arabinofuranosyl-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L-rhamnopyranosyl-(1-->3)]-alpha-L-arabinopyranoside] portion of the B side chain of the plant cell-wall pectic polysaccharide

Flavonol rhamnosylation indirectly modifies the cell wall defects of RHAMNOSE BIOSYNTHESIS1 mutants by altering rhamnose flux.

Only registered users can translate articles
Log In/Sign up
Rhamnose is required in Arabidopsis thaliana for synthesizing pectic polysaccharides and glycosylating flavonols. RHAMNOSE BIOSYNTHESIS1 (RHM1) encodes a UDP-l-rhamnose synthase, and rhm1 mutants exhibit many developmental defects, including short root hairs, hyponastic cotyledons, and left-handed

A putative Arabidopsis thaliana glycosyltransferase, At4g01220, which is closely related to three plant cell wall-specific xylosyltransferases, is differentially expressed spatially and temporally.

Only registered users can translate articles
Log In/Sign up
Plant cell wall polysaccharides are amongst the most complex, heterogeneous and abundant bio-molecules on earth. This makes the biosynthetic enzymes, namely the glycosyltransferases and polysaccharide synthases, important research targets in plant science and biotechnology. As an initial step to

Boron-bridged RG-II and calcium are required to maintain the pectin network of the Arabidopsis seed mucilage ultrastructure.

Only registered users can translate articles
Log In/Sign up
The structure of a pectin network requires both calcium (Ca2+) and boron (B). Ca2+ is involved in crosslinking pectic polysaccharides and arbitrarily induces the formation of an "egg-box" structure among pectin molecules, while B crosslinks rhamnogalacturonan II (RG-II) side chain A apiosyl residues
Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge