English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

phenylacetic acid/arabidopsis

The link is saved to the clipboard
ArticlesClinical trialsPatents
8 results

Amplification and disruption of the phenylacetyl-CoA ligase gene of Penicillium chrysogenum encoding an aryl-capping enzyme that supplies phenylacetic acid to the isopenicillin N-acyltransferase.

Only registered users can translate articles
Log In/Sign up
A gene, phl, encoding a phenylacetyl-CoA ligase was cloned from a phage library of Penicillium chrysogenum AS-P-78. The presence of five introns in the phl gene was confirmed by reverse transcriptase-PCR. The phl gene encoded an aryl-CoA ligase closely related to Arabidopsis thaliana 4-coumaroyl-CoA

Arogenate dehydratases can modulate the levels of phenylacetic acid in Arabidopsis.

Only registered users can translate articles
Log In/Sign up
Phenylacetic acid (PAA) is one type of natural auxin and widely exists in plants. Previous biochemical studies demonstrate that PAA in plants is synthesized from phenylalanine (Phe) via phenylpyruvate (PPA), but the PAA biosynthetic genes and its regulation remain unknown. In this article, we show

GH3 auxin-amido synthetases alter the ratio of indole-3-acetic acid and phenylacetic acid in Arabidopsis.

Only registered users can translate articles
Log In/Sign up
Auxin is the first discovered plant hormone and is essential for many aspects of plant growth and development. Indole-3-acetic acid (IAA) is the main auxin and plays pivotal roles in intercellular communication through polar auxin transport. Phenylacetic acid (PAA) is another natural auxin that does

UDP-glucosyltransferase UGT84B1 regulates the levels of indole-3-acetic acid and phenylacetic acid in Arabidopsis

Only registered users can translate articles
Log In/Sign up
Auxin is a key plant growth regulator for diverse developmental processes in plants. Indole-3-acetic acid (IAA) is a primary plant auxin that regulates the formation of various organs. Plants also produce phenylacetic acid (PAA), another natural auxin, which occurs more abundantly than IAA in

Benzyl Cyanide Leads to Auxin-Like Effects Through the Action of Nitrilases in Arabidopsis thaliana.

Only registered users can translate articles
Log In/Sign up
Plants within the Brassicales order generate glucosinolate hydrolysis products that can exert different biological effects on several organisms. Here, we evaluated the physiological effects of one of these compounds, benzyl cyanide (phenylacetonitrile), when exogenously applied on Arabidopsis

Arabidopsis thaliana GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis.

Only registered users can translate articles
Log In/Sign up
In Arabidopsis thaliana, the acyl acid amido synthetase Gretchen Hagen 3.5 (AtGH3.5) conjugates both indole-3-acetic acid (IAA) and salicylic acid (SA) to modulate auxin and pathogen response pathways. To understand the molecular basis for the activity of AtGH3.5, we determined the X-ray crystal

Auxin sensitivities of all Arabidopsis Aux/IAAs for degradation in the presence of every TIR1/AFB.

Only registered users can translate articles
Log In/Sign up
Auxin plays a key role in regulation of almost all processes of plant growth and development. Different physiological processes are regulated by different ranges of auxin concentrations; however, the underlying mechanisms creating these differences are largely unknown. The first step of auxin

Role of Arabidopsis INDOLE-3-ACETIC ACID CARBOXYL METHYLTRANSFERASE 1 in auxin metabolism

Only registered users can translate articles
Log In/Sign up
The phytohormone auxin regulates a wide range of developmental processes in plants. Indole-3-acetic acid (IAA) is the main auxin that moves in a polar manner and forms concentration gradients, whereas phenylacetic acid (PAA), another natural auxin, does not exhibit polar movement. Although these
Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge