English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

phenylalanine ammonia lyase/glycine max

The link is saved to the clipboard
ArticlesClinical trialsPatents
Page 1 from 49 results

Sequence and structure of a phenylalanine ammonia-lyase gene from Glycine max.

Only registered users can translate articles
Log In/Sign up
The gene encoding a key enzyme in anthocyanin biosynthesis, phenylalanine ammonia-lyase (PAL), was cloned from soybean (Glycine max). The purpose was to obtain a molecular probe to study the organization of this gene family in soybean and to examine novel regulatory mechanisms present in the

Rapid induction of phenylalanine ammonia-lyase and chalcone synthase mRNAs during fungus infection of soybean (Glycine max L.) roots or elicitor treatment of soybean cell cultures at the onset of phytoalexin synthesis.

Only registered users can translate articles
Log In/Sign up
The differential regulation of the activities and amounts of mRNAs for two enzymes involved in isoflavonoid phytoalexin biosynthesis in soybean was studied during the early stages after inoculation of primary roots with zoospores from either race 1 (incompatible, host resistant) or race 3

Modification of L-phenylalanine ammonia-lyase in soybean cell suspension cultures by 2-aminooxyacetate and L-2-aminooxy-3-phenylpropionate.

Only registered users can translate articles
Log In/Sign up
Suspension-cultured cells of soybean (Glycine max (L.) Merr. cv. Kanrich) produce large amounts of phenylalanine ammonia-lyase (PAL; EC 4.3.1.5), the first enzyme of phenylpropanoid metabolism, during growth. 2-Aminooxyacetic acid (AOA) and L-2-aminooxy-3-phenylpropionic acid (L-AOPP) inhibit the

L-DOPA increases lignification associated with Glycine max root growth-inhibition.

Only registered users can translate articles
Log In/Sign up
L-3,4-dihydroxyphenylalanine (L: -DOPA), an allelochemical exuded from the roots of velvet bean [Mucuna pruriens (L.) DC. var. utilis], presents a highly inhibitory action to plant growth. The effects of L-DOPA on phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) and peroxidase (POD, EC 1.11.1.7)

Peroxidase and phenylalanine ammonia-lyase activities, phenolic acid contents, and allelochemicals-inhibited root growth of soybean.

Only registered users can translate articles
Log In/Sign up
The influence of the allelochemicals ferulic (FA) and vanillic (VA) acids on peroxidase (POD, EC 1.11.1.7) and phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) activities and their relationships with phenolic acid (PhAs) contents and root growth of soybean (Glycine max (L.) Merr.) were examined.

Abscisic Acid Suppression of Phenylalanine Ammonia-Lyase Activity and mRNA, and Resistance of Soybeans to Phytophthora megasperma f.sp. glycinea.

Only registered users can translate articles
Log In/Sign up
Etiolated hypocotyls of the resistant soybean (Glycine max [L.] Merr.) cultivar Harosoy 63 became susceptible to Phytophthora megasperma (Drechs.) f.sp. glycinea (Hildeb.) Kuan and Erwin race 1 after treatment with abscisic acid. Susceptibility was expressed by increases in lesion size and a major

A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells.

Only registered users can translate articles
Log In/Sign up
Copper oxide nanoparticles (CuONPs) are widely used in several products and their release into the environment can cause toxicity to major food crops. In this study, toxic responses as a result of CuONPs exposure were studied in soybean (Glycine max L.) seedlings. The plants were grown in 1/2

Phytoalexin synthesis in soybean cells: elicitor induction of phenylalanine ammonia-lyase and chalcone synthase mRNAs and correlation with phytoalexin accumulation.

Only registered users can translate articles
Log In/Sign up
A glucan elicitor from cell walls of the fungus Phytophthora megasperma f. sp. glycinea, a pathogen of soybean (Glycine max), induced large and rapid increases in the activities of enzymes of general phenylpropanoid metabolism, phenylalanine ammonia-lyase, and of the flavonoid pathway, acetyl-CoA

A gene expression analysis of syncytia laser microdissected from the roots of the Glycine max (soybean) genotype PI 548402 (Peking) undergoing a resistant reaction after infection by Heterodera glycines (soybean cyst nematode).

Only registered users can translate articles
Log In/Sign up
The syncytium is a nurse cell formed within the roots of Glycine max by the plant parasitic nematode Heterodera glycines. Its development and maintenance are essential for nematode survival. The syncytium appears to undergo two developmental phases during its maturation into a functional nurse cell.

Lignification and related enzymes in Glycine max root growth-inhibition by ferulic acid.

Only registered users can translate articles
Log In/Sign up
Changes in soluble and cell wall bound peroxidase (POD, EC 1.11.1.7) activity, phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) activity, and lignin content in roots of ferulic acid-stressed soybean (Glycine max (L.) Merr.) seedlings and their relationships with root growth were investigated.

Antioxidant enzymes and isoflavonoids in chilled soybean (Glycine max (L.) Merr.) seedlings.

Only registered users can translate articles
Log In/Sign up
Changes of activity antioxidant enzymes and of levels of isoflavonoids were studied in the roots and hypocotyls of the etiolated soybean (Glycine max (L.) Merr. var. Essor) seedlings, submitted to cold. Prolonged exposure to 1 degrees C inhibited hypocotyl and root elongation and limited their

Induced defense-related proteins in soybean (Glycine max L. Merrill) plants by Carnobacterium sp. SJ-5 upon challenge inoculation of Fusarium oxysporum.

Only registered users can translate articles
Log In/Sign up
The aim of the present study was to analyze induced expression of defense-related proteins in the soybean plants by rhizobacterial stain Carnobacterium sp. SJ-5 upon challenge inoculation with Fusarium oxysporum. Determination of the enzymatic activity of the different defense-related enzymes,

Activation of phenylpropanoid pathway in legume plants exposed to heavy metals. Part I. Effects of cadmium and lead on phenylalanine ammonia-lyase gene expression, enzyme activity and lignin content.

Only registered users can translate articles
Log In/Sign up
Species-specific changes in expression of phenylalanine ammonia-lyase (PAL) and lignin content were detected in roots of soybean (Glycine max L.) and lupine (Lupinus luteus L.) seedlings treated with different concentrations of cadmium (Cd(2+), 0-25 mg/l) or lead (Pb(2+), 0-350 mg/l). The

Exogenous caffeic acid inhibits the growth and enhances the lignification of the roots of soybean (Glycine max).

Only registered users can translate articles
Log In/Sign up
The allelopathic effect of caffeic acid was tested on root growth, phenylalanine ammonia-lyase (PAL) and peroxidase (POD) activities, hydrogen peroxide (H(2)O(2)) accumulation, lignin content and monomeric composition of soybean (Glycine max) roots. We found that exogenously applied caffeic acid

Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean.

Only registered users can translate articles
Log In/Sign up
Salicylic acid (SA), an essential regulator of plant defense, is derived from chorismate via either the phenylalanine ammonia lyase (PAL) or the isochorismate synthase (ICS) catalyzed steps. The ICS pathway is thought to be the primary contributor of defense-related SA, at least in Arabidopsis. We
Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge