English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

quisqualic acid/ischemia

The link is saved to the clipboard
ArticlesClinical trialsPatents
7 results

Selective destruction of nitric oxide synthase neurons with quisqualate reduces damage after hypoxia-ischemia in the neonatal rat.

Only registered users can translate articles
Log In/Sign up
The vulnerability of the developing CNS to hypoxia-ischemia (H-I) differs from that of the mature brain and is due in part to release of nitric oxide (NO) from parenchymal neurons. If NO is important in the generation of excitotoxic injury after H-I in the developing CNS, then selective destruction

Perinatal hypoxic-ischemic brain injury enhances quisqualic acid-stimulated phosphoinositide turnover.

Only registered users can translate articles
Log In/Sign up
In an experimental model of perinatal hypoxic-ischemic brain injury, we examined quisqualic acid (Quis)-stimulated phosphoinositide (PPI) turnover in hippocampus and striatum. To produce a unilateral forebrain lesion in 7-day-old rat pups, the right carotid artery was ligated and animals were then

N-methyl-D-aspartate-mediated injury enhances quisqualic acid-stimulated phosphoinositide turnover in perinatal rats.

Only registered users can translate articles
Log In/Sign up
Previous work in our laboratory demonstrated that ischemic-hypoxic brain injury in postnatal day 7 rats causes a substantial increase in phosphoinositide (PPI) turnover stimulated by the glutamate analogue quisqualic acid (QUIS) in the hippocampus and striatum. To examine this phenomenon in more

Neuroprotective mechanism of (+)SKF 10,047 in vitro and in gerbil global brain ischemia.

Only registered users can translate articles
Log In/Sign up
OBJECTIVE The N-methyl-D-aspartate receptor is believed to mediate part of the ischemic neuronal damage caused by the excitatory amino acid glutamate. (+)SKF 10,047, the prototypic sigma-agonist, interacts with the N-methyl-D-aspartate receptor. Therefore, we studied the neuroprotective effect of

Ontogeny of excitotoxic injury to nicotinamide adenine dinucleotide phosphate diaphorase reactive neurons in the neonatal rat striatum.

Only registered users can translate articles
Log In/Sign up
To further define the ontogeny of "excitotoxic" injury to brain, intrastriatal injection of an N-methyl-D-aspartate agonist (quinolinate) and a non-N-methyl-D-aspartate agonist (quisqualate) was performed in rats at postnatal days 7 and 14, and in adults. Excitotoxic injury was quantified

The roads to mitochondrial dysfunction in a rat model of posttraumatic syringomyelia.

Only registered users can translate articles
Log In/Sign up
The pathophysiology of posttraumatic syringomyelia is incompletely understood. We examined whether local ischemia occurs after spinal cord injury. If so, whether it causes neuronal mitochondrial dysfunction and depletion, and subsequent energy metabolism impairment results in cell starvation of

4-(Tetrazolylalkyl)piperidine-2-carboxylic acids. Potent and selective N-methyl-D-aspartic acid receptor antagonists with a short duration of action.

Only registered users can translate articles
Log In/Sign up
We have prepared a series of cis-4-(tetrazolylakyl)piperidine-2-carboxylic acids as potent and selective N-methyl-D-aspartic acid (NMDA) receptor antagonists. NMDA antagonists may prove to be useful therapeutic agents, for instance, as anticonvulsants, in the treatment of neurodegenerative disorders
Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge