English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

retinal degeneration/phosphatase

The link is saved to the clipboard
ArticlesClinical trialsPatents
Page 1 from 49 results

Identification and characterization of a conserved family of protein serine/threonine phosphatases homologous to Drosophila retinal degeneration C.

Only registered users can translate articles
Log In/Sign up
The Drosophila retinal degeneration C (rdgC) gene encodes an unusual protein serine/threonine phosphatase in that it contains at least two EF-hand motifs at its carboxy terminus. By a combination of large-scale sequencing of human retina cDNA clones and searches of expressed sequence tag and genomic

Functional characterization of the three Drosophila retinal degeneration C (RDGC) protein phosphatase isoforms.

Only registered users can translate articles
Log In/Sign up
Drosophila retinal degeneration C (RDGC) is the founding member of the PPEF family of protein phosphatases. RDGC mediates dephosphorylation of the visual pigment rhodopsin and the TRP ion channel. From the rdgC locus, three protein isoforms, termed RDGC-S, -M, and -L, with different N-termini are

A novel human serine-threonine phosphatase related to the Drosophila retinal degeneration C (rdgC) gene is selectively expressed in sensory neurons of neural crest origin.

Only registered users can translate articles
Log In/Sign up
Through our transcriptional mapping effort in the Xp22 region, we have isolated by exon trapping a new transcript highly homologous to the Drosophila retinal degeneration C (rdgC) gene. rdgC encodes a serine/threonine phosphatase protein and is required in Drosophila to prevent light-induced retinal

Drosophila retinal degeneration C (rdgC) encodes a novel serine/threonine protein phosphatase.

Only registered users can translate articles
Log In/Sign up
The Drosophila retinal degeneration C (rdgC) gene is required to prevent light-induced retinal degeneration. Molecular analysis shows that the rdgC transcription unit encodes a novel serine/threonine protein phosphatase. Amino acids 153-393 define a domain that has 30% identity with the catalytic

Deficiency of SHP-1 protein-tyrosine phosphatase in "viable motheaten" mice results in retinal degeneration.

Only registered users can translate articles
Log In/Sign up
OBJECTIVE Viable motheaten mutant mice (abbreviated allele symbol me(v)) are deficient in Src-homology 2-domain phosphatase (SHP)-1, a critical negative regulator of signal transduction in hematopoietic cells. These mice exhibit immune dysfunction, hyperproliferation of myeloid cells, and

Molecular cloning, expression, and characterization of a novel human serine/threonine protein phosphatase, PP7, that is homologous to Drosophila retinal degeneration C gene product (rdgC).

Only registered users can translate articles
Log In/Sign up
A novel serine/threonine protein phosphatase (PPase) designated PP7 was identified from cDNA produced from human retina RNA. PP7 has a molecular mass of approximately 75 kDa, and the deduced amino acid sequence of PP7 contains a phosphatase catalytic core domain that possesses all of the invariant

Inactivation of the Akt survival pathway during photoreceptor apoptosis in the retinal degeneration mouse.

Only registered users can translate articles
Log In/Sign up
OBJECTIVE Previous work has indicated that the serine-threonine protein kinase Akt is a general mediator of cellular survival signals and that loss of Akt-mediated signaling can lead to the activation of apoptosis. This study was conducted to establish whether regulation of the Akt survival pathway

Solubility and subcellular localization of the three Drosophila RDGC phosphatase variants are determined by acylation.

Only registered users can translate articles
Log In/Sign up
Protein phosphorylation is an abundant molecular switch that regulates a multitude of cellular processes. In contrast to other subfamilies of phosphoprotein phosphatases, the PPEF subfamily is only poorly investigated. Drosophila retinal degeneration C (RDGC) constitutes the founding member of the

Depletion of PtdIns(4,5)P₂ underlies retinal degeneration in Drosophila trp mutants.

Only registered users can translate articles
Log In/Sign up
The prototypical transient receptor potential (TRP) channel is the major light-sensitive, and Ca(2+)-permeable channel in the microvillar photoreceptors of Drosophila. TRP channels are activated following hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P₂] by the key effector enzyme

Hereditary retinal degeneration in Drosophila melanogaster. A mutant defect associated with the phototransduction process.

Only registered users can translate articles
Log In/Sign up
Two genes in Drosophila, rdgA and rdgB, which when defective cause retinal degeneration, were discovered by Hotta and Benzer (Hotta, Y., and S. Benzer. 1970. Proc. Natl, Acad. Sci. U. S, A. 67:1156-1163). These mutants have photoreceptor cells that are histologically normal upon eclosion but

Suppression of constant-light-induced blindness but not retinal degeneration by inhibition of the rhodopsin degradation pathway.

Only registered users can translate articles
Log In/Sign up
BACKGROUND Continuous exposure to light, even at relatively low intensities, leads to retinal damage and blindness in wild-type animals. However, the molecular mechanisms underlying constant-light-induced blindness are poorly understood. It has been presumed that the visual impairment resulting from

Primary retinal degeneration: evidence of normal phagocytosis in the retinal pigment epithelium.

Only registered users can translate articles
Log In/Sign up
In rats with primary retinal degeneration, lens extraction combined with total retinal detachment provided a model for injection of a tracer of colloidal carbon into the subretinal space. Electron microscopy and acid phosphatase cytochemistry were subsequently used to analyze the ingestion of tracer

A G protein-coupled receptor phosphatase required for rhodopsin function.

Only registered users can translate articles
Log In/Sign up
Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors are phosphorylated by kinases that mediate agonist-dependent receptor deactivation. Although many receptor kinases have been isolated, the corresponding phosphatases, necessary for restoring the ground state of the

Dependence on the Lazaro phosphatidic acid phosphatase for the maximum light response.

Only registered users can translate articles
Log In/Sign up
The Drosophila phototransduction cascade serves as a paradigm for characterizing the regulation of sensory signaling and TRP channels in vivo . Activation of these channels requires phospholipase C (PLC) and may depend on subsequent production of diacylglycerol (DAG) and downstream metabolites . DAG

Regulation of the rhodopsin protein phosphatase, RDGC, through interaction with calmodulin.

Only registered users can translate articles
Log In/Sign up
Hundreds of G protein-coupled receptors (GPCRs) and at least six GPCR kinases have been identified, but the only GPCR phosphatase that has been definitively demonstrated is the rhodopsin phosphatase encoded by the rdgC locus of Drosophila. Mutations in rdgC result in defects in termination of the
Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge