English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

rhizophora × annamalayana/detox

The link is saved to the clipboard
ArticlesClinical trialsPatents
4 results

De novo transcriptome analysis of Rhizophora mucronata Lam. furnishes evidence for the existence of glyoxalase system correlated to glutathione metabolic enzymes and glutathione regulated transporter in salt tolerant mangroves

Only registered users can translate articles
Log In/Sign up
The accumulation of a metabolic by product - methylglyoxal above a minimal range can be highly toxic in all organisms. Stress induced elevation in methylglyoxal inactivates proteins and nucleic acids. Glutathione dependent glyoxalase enzymes like glyoxalase I and glyoxalase II together with

Copper and zinc differentially affect root glutathione accumulation and phytochelatin synthase gene expression of Rhizophora mucronata seedlings: Implications for mechanisms underlying trace metal tolerance

Only registered users can translate articles
Log In/Sign up
Mangroves are susceptible to contamination due to their proximity to shores and human activities. Exposure to excessive trace metals can disturb their physiological functions and may eventually lead to death. Rhizophora mucronata is a common species growing in the mangrove forests of Thailand.

Metal (Pb, Zn and Cu) uptake and tolerance by mangroves in relation to root anatomy and lignification/suberization.

Only registered users can translate articles
Log In/Sign up
Metal pollution has been widely reported in mangrove wetlands; however, the mechanisms involved in metal detoxification by mangroves are still poorly understood. This study aimed to investigate the possible function of root anatomy and lignification/suberization on metal uptake and tolerance in

Pb uptake and tolerance in the two selected mangroves with different root lignification and suberization.

Only registered users can translate articles
Log In/Sign up
Metal pollution has been widely reported in mangrove wetlands; however, the mechanisms involved in metal detoxification by mangroves are still poorly understood. This study aimed to investigate the possible function of root lignification/suberization on Pb uptake and tolerance in mangroves. Two
Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge