English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

ribulose diphosphate carboxylase/zea mays

The link is saved to the clipboard
ArticlesClinical trialsPatents
4 results

The distribution of carbonic anhydrase and ribulose diphosphate carboxylase in maize leaves.

Only registered users can translate articles
Log In/Sign up
Extraction of maize (Zea mays) leaves by progressive grinding under suitably protective conditions yields total carbonic anhydrase activities (4800 units per milligram chlorophyll) comparable to the activity in spinach (Spinacia oleracea) leaves. The total ribulose diphosphate carboxylase activity

Inhibition of the formation of photosynthetic enzymes by inhibitors of photosynthesis.

Only registered users can translate articles
Log In/Sign up
It has been shown previously that an increase in ribulose diphosphate carboxylase activity occurs upon brief illumination of leaves of dark-grown Zea mays plants; an increase in ribose 5-phosphate isomerase occurs after prolonged illumination. Both of these responses to illumination are inhibited by

Mechanism of Plant Growth Stimulation by Naphthenic Acid: II. Enzymes of CO(2) Fixation, CO(2) Compensation Point, Bean Embryo Respiration.

Only registered users can translate articles
Log In/Sign up
Potassium naphthenate, 20 mm, was applied to the foliage of 14-day-old plants of bush bean, Phaseolus vulgaris L, cv Top Crop, maize, Zea mays L, cv Golden Bantam, spring wheat, Triticum vulgare Vill., cv Neepawa, and a 2 mm solution to 21-day-old plants of sugar beet, Beta vulgaris L, cv CS-43.

Iron deficiency and the structure and physiology of maize chloroplasts.

Only registered users can translate articles
Log In/Sign up
The ultrastructure of mesophyll chloroplasts of maize (Zea mays L.) was more severely affected by iron deficiency that induced mild chlorosis than was the ultrastructure of bundle sheath plastids. Ferredoxin and ribulose diphosphate carboxylase levels were severely decreased by iron deficiency.
Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge