English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

ytterbium/triticum aestivum

The link is saved to the clipboard
ArticlesClinical trialsPatents
4 results

Aluminium triggers malate-independent potassium release via ion channels from the root apex in wheat.

Only registered users can translate articles
Log In/Sign up
The regulatory mechanisms for the aluminium (Al)-induced efflux of K(+) and malate from the root apex of Al-resistant wheat ( Triticum aestivum L. cv. Atlas) were characterized. Treatment with 20 mM tetraethylammonium (TEA) chloride, a K(+)-channel inhibitor, blocked the Al-induced K(+) efflux by

Cytotoxic thio-malate is transported by both an aluminum-responsive malate efflux pathway in wheat and the MAE1 malate permease in Schizosaccharomyces pombe.

Only registered users can translate articles
Log In/Sign up
Aluminum (Al) tolerance in wheat (Triticum aestivum L.) is mainly achieved by malate efflux, which is regulated by the expression of the recently identified gene, presumably encoding an Al-activated malate efflux transporter (ALMT1). However, the transport mechanism is not fully understood, partly

A chimeric protein of aluminum-activated malate transporter generated from wheat and Arabidopsis shows enhanced response to trivalent cations.

Only registered users can translate articles
Log In/Sign up
TaALMT1 from wheat (Triticum aestivum) and AtALMT1 from Arabidopsis thaliana encode aluminum (Al)-activated malate transporters, which confer acid-soil tolerance by releasing malate from roots. Chimeric proteins from TaALMT1 and AtALMT1 (Ta::At, At::Ta) were previously analyzed in Xenopus laevis

The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells.

Only registered users can translate articles
Log In/Sign up
The release of organic anions from roots can protect plants from aluminum (Al) toxicity and help them overcome phosphorus (P) deficiency. Our previous findings showed that Al treatment induced malate and citrate efflux from rape (Brassica napus) roots, and that P deficiency did not induce the
Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge