Spanish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Ophthalmology 2015-Jul

A novel device for assessing dark adaptation in field settings.

Solo los usuarios registrados pueden traducir artículos
Iniciar sesión Registrarse
El enlace se guarda en el portapapeles.
Alain B Labrique
Amanda C Palmer
Katherine Healy
Sucheta Mehra
Theodor C Sauer
Keith P West
Alfred Sommer

Palabras clave

Abstracto

BACKGROUND

Aberrant dark adaptation is common to many ocular diseases and pathophysiological conditions, including vitamin A deficiency, cardiopulmonary diseases, and hypoxia. Scotopic vision and pupillary responsiveness have typically been measured using subjective, time-consuming methods. Existing techniques are particularly challenging for use in developing country settings, where vitamin A deficiency remains a major public health problem. Our aim was design a compact, low cost, and easily operated device to assess dark adaptation in the field.

METHODS

The Portable Field Dark Adaptometer (PFDA) incorporates a digital camera, a retinal bleaching flash, and a Ganzfeld light source inside a pair of light-obscuring goggles. After a ~10 min period of dark adaption, the infrared camera digitally records afferent pupillary responses to graded light stimuli (-2.9 to 0.1 log cd/m(2)). We tested this device in a variety of field settings to assess: a) ease of use and b) whether test data could clearly and accurately depict the well-known dose-response relationship between light intensity and pupil contraction. A total of 822 videos were collected. We used an open source video analysis software to measure pupil size in pixel units. Pupillary responsiveness was expressed as the percent change in pupil size from pre- to post-light exposure. Box plots, t test, and multi-level mixed effects linear regression modeling were used to characterize the relationship between light intensity and pupillary response.

RESULTS

The PFDA was employed with only minor technical challenges in Bangladesh, Kenya, Zambia, and Peru. Our data show a clear linear increase in pupillary constriction with increasing log light intensity. Light intensity was a strong predictor of pupillary response, regardless of baseline pupil size.

CONCLUSIONS

The consistent physiological response demonstrated here supports the use of the PFDA as a reliable tool to measure dark adaptation. As a next step, PFDA measurements will be validated against biochemical indicators of vitamin A status and hypoxemia. Ultimately, this new technology may provide a novel approach for nutritional assessment, with potential clinical applications.

Únete a nuestra
página de facebook

La base de datos de hierbas medicinales más completa respaldada por la ciencia

  • Funciona en 55 idiomas
  • Curas a base de hierbas respaldadas por la ciencia
  • Reconocimiento de hierbas por imagen
  • Mapa GPS interactivo: etiquete hierbas en la ubicación (próximamente)
  • Leer publicaciones científicas relacionadas con su búsqueda
  • Buscar hierbas medicinales por sus efectos.
  • Organice sus intereses y manténgase al día con las noticias de investigación, ensayos clínicos y patentes.

Escriba un síntoma o una enfermedad y lea acerca de las hierbas que podrían ayudar, escriba una hierba y vea las enfermedades y los síntomas contra los que se usa.
* Toda la información se basa en investigaciones científicas publicadas.

Google Play badgeApp Store badge