Spanish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cancer Research 2005-Nov

Formation of 17-allylamino-demethoxygeldanamycin (17-AAG) hydroquinone by NAD(P)H:quinone oxidoreductase 1: role of 17-AAG hydroquinone in heat shock protein 90 inhibition.

Solo los usuarios registrados pueden traducir artículos
Iniciar sesión Registrarse
El enlace se guarda en el portapapeles.
Wenchang Guo
Philip Reigan
David Siegel
Joseph Zirrolli
Daniel Gustafson
David Ross

Palabras clave

Abstracto

We have examined the role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in the bioreductive metabolism of 17-allylamino-demethoxygeldanamycin (17-AAG). High-performance liquid chromatography (HPLC) analysis of the metabolism of 17-AAG by recombinant human NQO1 revealed the formation of a more polar metabolite 17-AAGH2. The formation of 17-AAGH2 was NQO1 dependent, and its formation could be inhibited by the addition of 5-methoxy-1,2-dimethyl-3-[(4-nitrophenoxy)methyl]indole-4,7-dione (ES936), a mechanism-based (suicide) inhibitor of NQO1. The reduction of 17-AAG to the corresponding hydroquinone 17-AAGH2 was confirmed by tandem liquid chromatography-mass spectrometry. 17-AAGH2 was relatively stable and only slowly underwent autooxidation back to 17-AAG over a period of hours. To examine the role of NQO1 in 17-AAG metabolism in cells, we used an isogenic pair of human breast cancer cell lines differing only in NQO1 levels. MDA468 cells lack NQO1 due to a genetic polymorphism, and MDA468/NQ16 cells are a stably transfected clone that express high levels of NQO1 protein. HPLC analysis of 17-AAG metabolism using cell sonicates and intact cells showed that 17-AAGH2 was formed by MDA468/NQ16 cells, and formation of 17-AAGH2 could be inhibited by ES936. No 17-AAGH2 was detected in sonicates or intact MDA468 cells. Following a 4-hour treatment with 17-AAG, the MDA468/NQ16 cells were 12-fold more sensitive to growth inhibition compared with MDA468 cells. More importantly, the increased sensitivity of MDA468/NQ16 cells to 17-AAG could be abolished if the cells were pretreated with ES936. Cellular markers of heat shock protein (Hsp) 90 inhibition, Hsp70 induction, and Raf-1 degradation were measured by immunoblot analysis. Marked Hsp70 induction and Raf-1 degradation was observed in MDA468/NQ16 cells but not in MDA468 cells. Similarly, downstream Raf-1 signaling molecules mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase and ERK also showed decreased levels of phosphorylation in MDA468/NQ16 cells but not in MDA468 cells. The ability of 17-AAG and 17-AAGH2 to inhibit purified yeast and human Hsp90 ATPase activity was examined. Maximal 17-AAG-induced ATPase inhibition was observed in the presence of NQO1 and could be abrogated by ES936, showing that 17-AAGH2 was a more potent Hsp90 inhibitor compared with 17-AAG. Molecular modeling studies also showed that due to increased hydrogen bonding between the hydroquinone and the Hsp90 protein, 17-AAGH2 was bound more tightly to the ATP-binding site in both yeast and human Hsp90 models. In conclusion, these studies have shown that reduction of 17-AAG by NQO1 generates 17-AAGH2, a relatively stable hydroquinone that exhibits superior Hsp90 inhibition.

Únete a nuestra
página de facebook

La base de datos de hierbas medicinales más completa respaldada por la ciencia

  • Funciona en 55 idiomas
  • Curas a base de hierbas respaldadas por la ciencia
  • Reconocimiento de hierbas por imagen
  • Mapa GPS interactivo: etiquete hierbas en la ubicación (próximamente)
  • Leer publicaciones científicas relacionadas con su búsqueda
  • Buscar hierbas medicinales por sus efectos.
  • Organice sus intereses y manténgase al día con las noticias de investigación, ensayos clínicos y patentes.

Escriba un síntoma o una enfermedad y lea acerca de las hierbas que podrían ayudar, escriba una hierba y vea las enfermedades y los síntomas contra los que se usa.
* Toda la información se basa en investigaciones científicas publicadas.

Google Play badgeApp Store badge