Spanish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Plant Biology 2018-02

Gene loss and genome rearrangement in the plastids of five Hemiparasites in the family Orobanchaceae.

Solo los usuarios registrados pueden traducir artículos
Iniciar sesión Registrarse
El enlace se guarda en el portapapeles.
Daniel C Frailey
Srinivasa R Chaluvadi
Justin N Vaughn
Caroline G Coatney
Jeffrey L Bennetzen

Palabras clave

Abstracto

The chloroplast genomes (plastome) of most plants are highly conserved in structure, gene content, and gene order. Parasitic plants, including those that are fully photosynthetic, often contain plastome rearrangements. These most notably include gene deletions that result in a smaller plastome size. The nature of gene loss and genome structural rearrangement has been investigated in several parasitic plants, but their timing and contributions to the adaptation of these parasites requires further investigation, especially among the under-studied hemi-parasites.

De novo sequencing, assembly and annotation of the chloroplast genomes of five photosynthetic parasites from the family Orobanchaceae were employed to investigate plastome dynamics. Four had major structural rearrangements, including gene duplications and gene losses, that differentiated the taxa. The facultative parasite Aureolaria virginica had the most similar genome content to its close non-parasitic relative, Lindenbergia philippensis, with similar genome size and organization, and no differences in gene content. In contrast, the facultative parasite Buchnera americana and three obligate parasites in the genus Striga all had enlargements of their plastomes, primarily caused by expansion within the large inverted repeats (IRs) that are a standard plastome feature. Some of these IR increases were shared by multiple investigated species, but others were unique to particular lineages. Gene deletions and pseudogenization were also both shared and lineage-specific, with particularly frequent and independent loss of the ndh genes involved in electron recycling.

Five new plastid genomes were fully assembled and compared. The results indicate that plastome instability is common in parasitic plants, even those that retain the need to perform essential plastid functions like photosynthesis. Gene losses were slow and not identical across taxa, suggesting that different lineages had different uses or needs for some of their plastome gene content, including genes involved in some aspects of photosynthesis. Recent repeat region extensions, some unique to terminal species branches, were observed after the divergence of the Buchnera/Striga clade, suggesting that this otherwise rare event has some special value in this lineage.

Únete a nuestra
página de facebook

La base de datos de hierbas medicinales más completa respaldada por la ciencia

  • Funciona en 55 idiomas
  • Curas a base de hierbas respaldadas por la ciencia
  • Reconocimiento de hierbas por imagen
  • Mapa GPS interactivo: etiquete hierbas en la ubicación (próximamente)
  • Leer publicaciones científicas relacionadas con su búsqueda
  • Buscar hierbas medicinales por sus efectos.
  • Organice sus intereses y manténgase al día con las noticias de investigación, ensayos clínicos y patentes.

Escriba un síntoma o una enfermedad y lea acerca de las hierbas que podrían ayudar, escriba una hierba y vea las enfermedades y los síntomas contra los que se usa.
* Toda la información se basa en investigaciones científicas publicadas.

Google Play badgeApp Store badge