Spanish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Immunology 1991-Jun

Modification of lymphocyte migration by mannans and phosphomannans. Different carbohydrate structures control entry of lymphocytes into spleen and lymph nodes.

Solo los usuarios registrados pueden traducir artículos
Iniciar sesión Registrarse
El enlace se guarda en el portapapeles.
S A Weston
C R Parish

Palabras clave

Abstracto

Previous in vitro studies suggest that recognition of phosphomannosyl structures by lymphocytes plays a central role in the binding of lymphocytes to high endothelial venules. However, the physiologic relevance of phosphomannosyl recognition in in vivo lymphocyte migration has not been established. This paper describes experiments that examined this question. It was demonstrated that the phosphomannan monoester core (PPME) from Pichia holstii, a potent inhibitor of peripheral node high endothelial venule interactions in vitro, was a very effective inhibitor of in vivo lymphocyte migration, as little as 39 micrograms/mouse significantly inhibiting popliteal lymph node entry. Furthermore, PPME exhibited a similar hierarchy of inhibition in vivo as previously reported in vitro, most effectively inhibiting entry of lymphocytes into popliteal lymph node, somewhat less effectively inhibiting mesenteric lymph node entry and being a relatively poor inhibitor of Peyer's patch entry. Additionally, PPME inhibited splenic entry of lymphocytes, and inhibition of lymphoid organ entry was accompanied by a substantial leukocytosis. Two additional mannose-containing compounds were found to modify lymphocyte migration, namely a well defined mannose containing pentasaccharide (PENT) with terminal mannose-6-phosphate (M6P) and an unphosphorylated yeast mannan. Both PENT and mannan induced leukocytosis and were particularly effective at inhibiting splenic entry of lymphocytes. In fact, detailed dose-response curves indicated that mannan was a much more potent inhibitor of splenic entry than PPME or PENT, whereas in lymph nodes PPME was the most effective inhibitor. Pretreatment of lymphocytes before injection with either PPME or mannan demonstrated that PPME could act at the lymphocyte level, whereas mannan probably acted at some other site. Collectively, these data suggest that different carbohydrate structures are involved in the entry of lymphocytes into different lymphoid organs, with mannose recognition playing an important role in splenic entry and recognition of M6P-like structures controlling lymph node entry. In contrast, it was found that mannose-and M6P-containing structures, unlike sulfated polysaccharides such as fucoidan, did not affect the subsequent positioning of lymphocytes within lymphoid organs.

Únete a nuestra
página de facebook

La base de datos de hierbas medicinales más completa respaldada por la ciencia

  • Funciona en 55 idiomas
  • Curas a base de hierbas respaldadas por la ciencia
  • Reconocimiento de hierbas por imagen
  • Mapa GPS interactivo: etiquete hierbas en la ubicación (próximamente)
  • Leer publicaciones científicas relacionadas con su búsqueda
  • Buscar hierbas medicinales por sus efectos.
  • Organice sus intereses y manténgase al día con las noticias de investigación, ensayos clínicos y patentes.

Escriba un síntoma o una enfermedad y lea acerca de las hierbas que podrían ayudar, escriba una hierba y vea las enfermedades y los síntomas contra los que se usa.
* Toda la información se basa en investigaciones científicas publicadas.

Google Play badgeApp Store badge