Estonian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Archives of Biochemistry and Biophysics 1989-May

A kinetic study of the effects of phosphate and organic phosphates on the activity of phosphoenolpyruvate carboxylase from Crassula argentea.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Link salvestatakse lõikelauale
C R Meyer
P Rustin
R T Wedding

Märksõnad

Abstraktne

The effects of phosphate and several phosphate-containing compounds on the activity of purified phosphoenolpyruvate carboxylase (PEPC) from the crassulacean acid metabolism plant, Crassula argentea, were investigated. When assayed at subsaturating phosphoenolpyruvate (PEP) concentrations, low concentrations of most of the compounds tested were found to stimulate PEPC activity. This activation, variable in extent, was found in all cases to be competitive with glucose 6-phosphate (Glc-6-P) stimulation, suggesting that these effectors bind to the Glc-6-P site. At higher concentrations, depending upon the effector molecule studied, deactivation, inhibition, or no response was observed. More detailed studies were performed with Glc-6-P, AMP, phosphoglycolate, and phosphate. AMP had previously been shown to be a specific ligand for the Glc-6-P site. The main effect of Glc-6-P and AMP on the kinetic parameters was to decrease the apparent Km and increase Vmax/Km. AMP also caused a decrease in the Vmax of the reaction. In contrast, phosphoglycolate acted essentially as a competitive inhibitor increasing the apparent Km for PEP and decreasing Vmax/Km. Inorganic phosphate had a biphasic effect on the kinetic parameters, resulting in a transient decrease in Km followed by an increase of the apparent Km for PEP with increasing concentration of phosphate. The Vmax also was decreased with increasing phosphate concentrations. Further, the enzyme appeared to respond to the complex of phosphate with magnesium. In the presence of a saturating concentration of AMP, no activation but rather inhibition was observed with increasing phosphate concentration. This is consistent with the binding of phosphate to two separate sites--the Glc-6-P activation site and an inhibitory site, a phenomenon that may be occurring with other phosphate containing compounds. High concentrations of phosphate with magnesium were found to protect enzyme activity when PEPC, previously shown to contain an essential arginine at the active site, was incubated with the specific arginyl reagent 2,3-butanedione, consistent with the binding of phosphate at the active site. Data were successfully fitted to a rapid equilibrium model allowing for binding of the phosphate-magnesium complex to both the activation site and the active site which accounts for the activation/deactivation observed at low substrate concentrations. Effects on the Vmax of the reaction are also addressed. Factors controlling the differential affinity of various effectors to the active site or activation site appear to include charge distribution, size, and other steric factors.

Liitu meie
facebooki lehega

Kõige täiuslikum ravimtaimede andmebaas, mida toetab teadus

  • Töötab 55 keeles
  • Taimsed ravimid, mida toetab teadus
  • Maitsetaimede äratundmine pildi järgi
  • Interaktiivne GPS-kaart - märgistage ürdid asukohas (varsti)
  • Lugege oma otsinguga seotud teaduspublikatsioone
  • Otsige ravimtaimi nende mõju järgi
  • Korraldage oma huvisid ja hoidke end kursis uudisteuuringute, kliiniliste uuringute ja patentidega

Sisestage sümptom või haigus ja lugege ravimtaimede kohta, mis võivad aidata, tippige ürdi ja vaadake haigusi ja sümptomeid, mille vastu seda kasutatakse.
* Kogu teave põhineb avaldatud teaduslikel uuringutel

Google Play badgeApp Store badge