Estonian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Microbial Ecology 2013-Oct

A microbial link between elevated CO2 and methane emissions that is plant species-specific.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Link salvestatakse lõikelauale
Jenny Kao-Kniffin
Biao Zhu

Märksõnad

Abstraktne

Rising atmospheric CO(2) levels alter the physiology of many plant species, but little is known of changes to root dynamics that may impact soil microbial mediation of greenhouse gas emissions from wetlands. We grew co-occurring wetland plant species that included an invasive reed canary grass (Phalaris arundinacea L.) and a native woolgrass (Scirpus cyperinus L.) in a controlled greenhouse facility under ambient (380 ppm) and elevated atmospheric CO(2) (700 ppm). We hypothesized that elevated atmospheric CO(2) would increase the abundance of both archaeal methanogen and bacterial methanotroph populations through stimulation of plant root and shoot biomass. We found that methane levels emitted from S. cyperinus shoots increased 1.5-fold under elevated CO(2), while no changes in methane levels were detected from P. arundincea. The increase in methane emissions was not explained by enhanced root or shoot growth of S. cyperinus. Principal components analysis of the total phospholipid fatty acid (PLFA) recovered from microbial cell membranes revealed that elevated CO(2) levels shifted the composition of the microbial community under S. cyperinus, while no changes were detected under P. arundinacea. More detailed analysis of microbial abundance showed no impact of elevated CO(2) on a fatty acid indicative of methanotrophic bacteria (18:2ω6c), and no changes were detected in the terminal restriction fragment length polymorphism (T-RFLP) relative abundance profiles of acetate-utilizing archaeal methanogens. Plant carbon depleted in (13)C was traced into the PLFAs of soil microorganisms as a measure of the plant contribution to microbial PLFA. The relative contribution of plant-derived carbon to PLFA carbon was larger in S. cyperinus compared with P. arundinacea in four PLFAs (i14:0, i15:0, a15:0, and 18:1ω9t). The δ(13)C isotopic values indicate that the contribution of plant-derived carbon to microbial lipids could differ in rhizospheres of CO(2)-responsive plant species, such as S. cyperinus in this study. The results from this study show that the CO(2)-methane link found in S. cyperinus can occur without a corresponding change in methanogen and methanotroph relative abundances, but PLFA analysis indicated shifts in the community profile of bacteria and fungi that were unique to rhizospheres under elevated CO(2).

Liitu meie
facebooki lehega

Kõige täiuslikum ravimtaimede andmebaas, mida toetab teadus

  • Töötab 55 keeles
  • Taimsed ravimid, mida toetab teadus
  • Maitsetaimede äratundmine pildi järgi
  • Interaktiivne GPS-kaart - märgistage ürdid asukohas (varsti)
  • Lugege oma otsinguga seotud teaduspublikatsioone
  • Otsige ravimtaimi nende mõju järgi
  • Korraldage oma huvisid ja hoidke end kursis uudisteuuringute, kliiniliste uuringute ja patentidega

Sisestage sümptom või haigus ja lugege ravimtaimede kohta, mis võivad aidata, tippige ürdi ja vaadake haigusi ja sümptomeid, mille vastu seda kasutatakse.
* Kogu teave põhineb avaldatud teaduslikel uuringutel

Google Play badgeApp Store badge