Estonian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Plant Biology 2019-Nov

Auxin protects Arabidopsis thaliana cell suspension cultures from programmed cell death induced by the cellulose biosynthesis inhibitors thaxtomin A and isoxaben.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Link salvestatakse lõikelauale
Fatima Awwad
Guillaume Bertrand
Michel Grandbois
Nathalie Beaudoin

Märksõnad

Abstraktne

Thaxtomin A (TA) is a natural cellulose biosynthesis inhibitor (CBI) synthesized by the potato common scab-causing pathogen Streptomyces scabies. Inhibition of cellulose synthesis by TA compromises cell wall organization and integrity, leading to the induction of an atypical program of cell death (PCD). These processes may facilitate S. scabies entry into plant tissues. To study the mechanisms that regulate the induction of cell death in response to inhibition of cellulose synthesis, we used Arabidopsis thaliana cell suspension cultures treated with two structurally different CBIs, TA and the herbicide isoxaben (IXB).The induction of cell death by TA and IXB was abrogated following pretreatment with the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) and the natural auxin indole-3-acetic acid (IAA). The addition of auxin efflux inhibitors also inhibited the CBI-mediated induction of PCD. This effect may be due to intracellular accumulation of auxin. Auxin has a wide range of effects in plant cells, including a role in the control of cell wall composition and rigidity to facilitate cell elongation. Using Atomic Force Microscopy (AFM)-based force spectroscopy, we found that inhibition of cellulose synthesis by TA and IXB in suspension-cultured cells decreased cell wall stiffness to a level slightly different than that caused by auxin. However, the cell wall stiffness in cells pretreated with auxin prior to CBI treatment was equivalent to that of cells treated with auxin only.Addition of auxin to Arabidopsis cell suspension cultures prevented the TA- and IXB-mediated induction of cell death. Cell survival was also stimulated by inhibition of polar auxin transport during CBI-treatment. Inhibition of cellulose synthesis perturbed cell wall mechanical properties of Arabidopsis cells. Auxin treatment alone or with CBI also decreased cell wall stiffness, showing that the mechanical properties of the cell wall perturbed by CBIs were not restored by auxin. However, since auxin's effects on the cell wall stiffness apparently overrode those induced by CBIs, we suggest that auxin may limit the impact of CBIs by restoring its own transport and/or by stabilizing the plasma membrane - cell wall - cytoskeleton continuum.

Liitu meie
facebooki lehega

Kõige täiuslikum ravimtaimede andmebaas, mida toetab teadus

  • Töötab 55 keeles
  • Taimsed ravimid, mida toetab teadus
  • Maitsetaimede äratundmine pildi järgi
  • Interaktiivne GPS-kaart - märgistage ürdid asukohas (varsti)
  • Lugege oma otsinguga seotud teaduspublikatsioone
  • Otsige ravimtaimi nende mõju järgi
  • Korraldage oma huvisid ja hoidke end kursis uudisteuuringute, kliiniliste uuringute ja patentidega

Sisestage sümptom või haigus ja lugege ravimtaimede kohta, mis võivad aidata, tippige ürdi ja vaadake haigusi ja sümptomeid, mille vastu seda kasutatakse.
* Kogu teave põhineb avaldatud teaduslikel uuringutel

Google Play badgeApp Store badge