Estonian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Heart and Vessels 2002-Nov

Contribution of superoxide to reduced antioxidant activity of glycoxidative serum albumin.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Link salvestatakse lõikelauale
Noriyuki Sakata
Akira Moh
Shigeo Takebayashi

Märksõnad

Abstraktne

Hyperglycemia increases oxidative stress in various tissues and leads to diabetic cardiovascular complication. Dyslipidemia, such as an increase in oxidized low-density lipoprotein (LDL), is well recognized in diabetic patients with hyperglycemia. However, the mechanism by which hyperglycemia causes the increased LDL oxidation remains unclear. Albumin is the most abundant protein in the circulation, and can function as an antioxidant. Therefore, we examined whether glycoxidative modification inhibits the antioxidant activity of albumin to LDL oxidation and clarified the mechanism by which this modification may suppress its antioxidant activity. Human serum albumin (HSA) was incubated in phosphate-buffered saline with and without glucose at 37 degrees C for up to 8 weeks under aerobic conditions (referred to as glycoxidation (goHSA) and oxidation (oHSA), respectively). Metal chelator-treated, nonoxidative HSA (chHSA) and freshly prepared HSA (fHSA) were used as controls. N(epsilon)-(carboxymethyl)lysine (CML), a glycoxidative product, was determined by enzyme-linked immunosorbent assay. Oxidation was estimated by measuring the thiols of the HSA molecule. Copper-mediated oxidation of LDL was conducted in the presence or absence of modified HSAs at 37 degrees C for 6 days. Malondialdehyde and negative charge of LDL were measured. To clarify the mechanism of reduced antioxidant activity of HSA, we examined firstly the binding activity of modified HSAs to copper, and secondly the effects of free radical scavengers on the formation of malondialdehyde. CML was formed in goHSA in a time- and concentration-dependent manner. Both goHSA and oHSA significantly decreased the contents of free thiol groups compared to ch- and fHSAs. The antioxidant activity of goHSA to LDL oxidation was the lowest among various modified HSAs. The oHSA showed a moderate decrease in antioxidant activity. The binding activity of go- and oHSAs to copper was lower than that of ch- and fHSAs. The formation of MDA from LDL oxidation in the presence of goHSA was completely inhibited by Tiron (1,2-dihydroxy-3,5-benzenedisulfonic acid) and superoxide dismutase. In contrast, catalase and mannitol had no effect. Our results indicate that in vitro glycoxidation of HSA induced a marked loss of antioxidant activity of this molecule to copper-mediated oxidation of LDL, which may be caused by the generation of superoxide.

Liitu meie
facebooki lehega

Kõige täiuslikum ravimtaimede andmebaas, mida toetab teadus

  • Töötab 55 keeles
  • Taimsed ravimid, mida toetab teadus
  • Maitsetaimede äratundmine pildi järgi
  • Interaktiivne GPS-kaart - märgistage ürdid asukohas (varsti)
  • Lugege oma otsinguga seotud teaduspublikatsioone
  • Otsige ravimtaimi nende mõju järgi
  • Korraldage oma huvisid ja hoidke end kursis uudisteuuringute, kliiniliste uuringute ja patentidega

Sisestage sümptom või haigus ja lugege ravimtaimede kohta, mis võivad aidata, tippige ürdi ja vaadake haigusi ja sümptomeid, mille vastu seda kasutatakse.
* Kogu teave põhineb avaldatud teaduslikel uuringutel

Google Play badgeApp Store badge