Estonian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
NeuroToxicology 2018-Jul

Effects of inhaled particulate matter on the central nervous system in mice.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Link salvestatakse lõikelauale
So Young Kim
Jin Ki Kim
So Hyeon Park
Byeong-Gon Kim
An-Soo Jang
Seung Ha Oh
Jun Ho Lee
Myung-Whan Suh
Moo Kyun Park

Märksõnad

Abstraktne

Little is known regarding the adverse effects of chronic particulate matter (PM) inhalation on the central nervous system (CNS). The present study aimed to examine how PM exposure impacts on oxidative stress and inflammatory processes, as well as the expression of interneurons and perineuronal nets (PNNs) in the CNS. BALB/c mice (6-week-old females, n = 32) were exposed to 1 to 5 μm size diesel-extracted particles (DEPs) (100 μg/m3, 5 d/week, 5 h/day) and categorized into the following four groups: 1) 4-week DEP (n = 8); 2) 4-week control (n = 8), 3) 8-week DEP (n = 8); and 4) 8-week control (n = 8). The olfactory bulb, prefrontal cortex, temporal cortex, striatum, and cerebellum were harvested from the animals in each group. The expression of antioxidants (heme oxygenase 1 [HO-1] and superoxide dismutase 2 [SOD-2]), and markers of the unfolded protein response (X-box binding protein [XBP]-1S), inflammation (tumor necrosis factor-alpha [TNF-α]), and proliferation (neurotrophin-3 and brain-derived neurotrophic factor [BDNF]) were measured using reverse transcription polymerase chain reaction (PCR) and Western blotting. The expression levels of HO-1, SOD-2, XBP-1S, TNF-α, neurotrophin-3, and BDNF were compared among groups using the Mann-Whitney U test. The temporal cortex was immunostained for parvalbumin (PV) and Wisteria floribunda agglutinin (WFA). The numbers of PV- and WFA-positive cells were counted using a confocal microscope and analyzed with the Mann-Whitney U test. HO-1 expression was elevated in the prefrontal cortex, temporal cortex, striatum, and cerebellum of mice in the 8-week DEP group compared with the control group. Expression of SOD-2 and XBP-1S was elevated in the prefrontal cortex and striatum of the 8-week DEP group compared with the control group. TNF-α expression was elevated in the prefrontal cortex, temporal cortex, striatum, and cerebellum in the 4- and 8-week DEP groups compared with the control group. Neurotrophin-3 expression was decreased in the olfactory bulb and striatum of the 8-week DEP group compared with the control group. WFA density was increased in the 8-week DEP group compared with the control group. The PV and PV + WFA densities were decreased in the 4-week DEP group compared with the control group. Chronic DEP inhalation activated oxidative stress and inflammation in multiple brain regions. Chronic DEP inhalation increased PNNs and decreased the number of interneurons, which may contribute to PM exposure-related CNS dysfunction.

Liitu meie
facebooki lehega

Kõige täiuslikum ravimtaimede andmebaas, mida toetab teadus

  • Töötab 55 keeles
  • Taimsed ravimid, mida toetab teadus
  • Maitsetaimede äratundmine pildi järgi
  • Interaktiivne GPS-kaart - märgistage ürdid asukohas (varsti)
  • Lugege oma otsinguga seotud teaduspublikatsioone
  • Otsige ravimtaimi nende mõju järgi
  • Korraldage oma huvisid ja hoidke end kursis uudisteuuringute, kliiniliste uuringute ja patentidega

Sisestage sümptom või haigus ja lugege ravimtaimede kohta, mis võivad aidata, tippige ürdi ja vaadake haigusi ja sümptomeid, mille vastu seda kasutatakse.
* Kogu teave põhineb avaldatud teaduslikel uuringutel

Google Play badgeApp Store badge