Estonian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Proteomics 2015-Jan

Gel-free quantitative proteomic approach to identify cotyledon proteins in soybean under flooding stress.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Link salvestatakse lõikelauale
Abu Hena Mostafa Kamal
Hamid Rashid
Katsumi Sakata
Setsuko Komatsu

Märksõnad

Abstraktne

Flooding stress causes growth inhibition and ultimately death in most crop species by limiting of energy production. To better understand plant responses to flooding stress, here, flooding-responsive proteins in the cotyledons of soybean were identified using a gel-free quantitative proteomic approach. One hundred forty six proteins were commonly observed in both control and flooding-stressed plants, and 19 were identified under only flooding stress conditions. The main functional categories were protein and development-related proteins. Protein-protein interaction analysis revealed that zincin-like metalloprotease and cupin family proteins were found to highly interact with other proteins under flooding stress. Plant stearoyl acyl-carrier protein, ascorbate peroxidase 1, and secretion-associated RAS superfamily 2 were down-regulated, whereas ferretin 1 was up-regulated at the transcription level. Notably, the levels of all corresponding proteins were decreased, indicating that mRNA translation to proteins is impaired under flooding conditions. Decreased levels of ferritin may lead to a strong deregulation of the expression of several metal transporter genes and over-accumulation of iron, which led to increased levels of reactive oxygen species, resulting to detoxification of these reactive species. Taken together, these results suggest that ferritin might have an essential role in protecting plant cells against oxidative damage under flooding conditions.

UNASSIGNED

This study reported the comparative proteomic analysis of cotyledon of soybean plants between non-flooding and flooding conditions using the gel-free quantitative techniques. Mass spectrometry analysis of the proteins from cotyledon resulted in the identification of a total of 165 proteins under flooding stress. These proteins were assigned to different functional categories, such as protein, development, stress, redox, and glycolysis. Therefore, this study provides not only the comparative proteomic analysis but also the molecular mechanism underlying the flooding responsive protein functions in the cotyledon.

Liitu meie
facebooki lehega

Kõige täiuslikum ravimtaimede andmebaas, mida toetab teadus

  • Töötab 55 keeles
  • Taimsed ravimid, mida toetab teadus
  • Maitsetaimede äratundmine pildi järgi
  • Interaktiivne GPS-kaart - märgistage ürdid asukohas (varsti)
  • Lugege oma otsinguga seotud teaduspublikatsioone
  • Otsige ravimtaimi nende mõju järgi
  • Korraldage oma huvisid ja hoidke end kursis uudisteuuringute, kliiniliste uuringute ja patentidega

Sisestage sümptom või haigus ja lugege ravimtaimede kohta, mis võivad aidata, tippige ürdi ja vaadake haigusi ja sümptomeid, mille vastu seda kasutatakse.
* Kogu teave põhineb avaldatud teaduslikel uuringutel

Google Play badgeApp Store badge