Estonian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1992-May

Growth Kinetics, Carbohydrate, and Leaf Phosphate Content of Clover (Trifolium subterraneum L.) after Transfer to a High CO(2) Atmosphere or to High Light and Ambient Air.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Link salvestatakse lõikelauale
F Morin
M André
T Betsche

Märksõnad

Abstraktne

Intact air-grown (photosynthetic photon flux density, 400 microeinsteins per square meter per second) clover plants (Trifolium subterraneum L.) were transfered to high CO(2) (4000 microliters CO(2) per liter; photosynthetic photon flux density, 400 microeinsteins per square meter per second) or to high light (340 microliters CO(2) per liter; photosynthetic photon flux density, 800 microeinsteins per square meter per second) to similarly stimulate photosynthetic net CO(2) uptake. The daily increment of net CO(2) uptake declined transiently in high CO(2), but not in high light, below the values in air/standard light. After about 3 days in high CO(2), the daily increment of net CO(2) uptake increased but did not reach the high light values. Nightly CO(2) release increased immediately in high light, whereas there was a 3-day lag phase in high CO(2). During this time, starch accumulated to a high level, and leaf deterioration was observed only in high CO(2). After 12 days, starch was two- to threefold higher in high CO(2) than in high light, whereas sucrose was similar. Leaf carbohydrates were determined during the first and fourth day in high CO(2). Starch increased rapidly throughout the day. Early in the day, sucrose was low and similar in high CO(2) and ambient air (same light). Later, sucrose increased considerably in high CO(2). The findings that (a) much more photosynthetic carbon was partitioned into the leaf starch pool in high CO(2) than in high light, although net CO(2) uptake was similar, and that (b) rapid starch formation occurred in high CO(2) even when leaf sucrose was only slightly elevated suggest that low sink capacity was not the main constraint in high CO(2). It is proposed that carbon partitioning between starch (chloroplast) and sucrose (cytosol) was perturbed by high CO(2) because of the lack of photorespiration. Total phosphate pools were determined in leaves. Concentrations based on fresh weight of orthophosphate, soluble esterified phosphate, and total phosphate markedly declined during 13 days of exposure of the plants to high CO(2) but changed little in high light/ambient air. During this time, the ratio of orthophosphate to soluble esterified phosphate decreased considerably in high CO(2) and increased slightly in high light/ambient air. It appears that phosphate uptake and growth were similarly stimulated by high light, whereas the coordination was weak in high CO(2).

Liitu meie
facebooki lehega

Kõige täiuslikum ravimtaimede andmebaas, mida toetab teadus

  • Töötab 55 keeles
  • Taimsed ravimid, mida toetab teadus
  • Maitsetaimede äratundmine pildi järgi
  • Interaktiivne GPS-kaart - märgistage ürdid asukohas (varsti)
  • Lugege oma otsinguga seotud teaduspublikatsioone
  • Otsige ravimtaimi nende mõju järgi
  • Korraldage oma huvisid ja hoidke end kursis uudisteuuringute, kliiniliste uuringute ja patentidega

Sisestage sümptom või haigus ja lugege ravimtaimede kohta, mis võivad aidata, tippige ürdi ja vaadake haigusi ja sümptomeid, mille vastu seda kasutatakse.
* Kogu teave põhineb avaldatud teaduslikel uuringutel

Google Play badgeApp Store badge