Estonian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Toxicology and Applied Pharmacology 1996-Jul

Influence of the halogen-substituent pattern of fluoronitrobenzenes on their biotransformation and capacity to induce methemoglobinemia.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Link salvestatakse lõikelauale
N H Cnubben
E M Soffers
M A Peters
J Vervoort
I M Rietjens

Märksõnad

Abstraktne

In the present study both the biotransformation patterns and the capacity to induce methemoglobinemia of a series of fluoronitrobenzenes were investigated. This was done to investigate to what extent variation in the number and position of the halogen substituents influence the metabolic fate of the fluoronitrobenzenes, thereby influencing their capacity to induce methemoglobinemia. The results obtained were compared to the effect of the fluorine substituent patterns on the calculated electronic characteristics and, thus, on the chemical reactivity of the fluoronitrobenzenes. Analysis of the in vivo metabolic profiles demonstrates a dependence of the extent of nitroreduction, of glutathione conjugation, and of aromatic hydroxylation with the pattern of halogen substitution. With an increasing number of fluorine substituents at electrophilic carbon centers, 24-hr urine recovery values decreased and fluoride anion elimination increased, due to increased reactivity of the fluoronitrobenzenes with cellular nucleophiles. In vitro studies even demonstrated a clear correlation between calculated parameters for the electrophilicity of the fluoronitrobenzenes and the natural logarithm of their rate of reaction with glutathione or with bovine serum albumin, taken as a model for cellular nucleophiles (r = 0.97 and r = 0.98, respectively). Increased possibilities for the conjugation of the fluoronitrobenzenes to cellular nucleophiles were accompanied by decreased contributions of nitroreduction and aromatic hydroxylation to the overall in vivo metabolite patterns, as well as by a decreased capacity of the fluoronitrobenzenes to induce methemoglobinemia. In vitro studies on the rates of nitroreduction of the various fluoronitrobenzenes by cecal microflora and rat liver microsomes revealed that the changes in the capacity of the fluoronitrobenzenes to induce methemoglobinemia were not due to differences in their intrinsic reactivity in the pathway of nitroreduction, leading to methemoglobinemia-inducing metabolites. Thus, the results of the present study clearly demonstrate that the number and position of fluorine substituents in the fluoronitrobenzenes influence the capacity of the fluoronitrobenzenes to induce methemoglobinemia, not because their intrinsic chemical reactivity for entering the nitroreduction pathway is influenced. The different methemoglobinemic capacity must rather result from differences in the inherent direct methemoglobinemic capacity and/or reactivity of the various toxic metabolites and/or from the fact that the halogen substituent pattern influences the electrophilic reactivity, thereby changing the possibilities for reactions of the nitrobenzenes with glutathione and, especially, other cellular nucleophiles. When the number of fluorine substituents increases, the electrophilicity of the fluoronitrobenzenes can become so high that glutathione conjugation is no longer able to compete efficiently with covalent binding of the fluoronitrobenzenes to cellular macromolecules. As a consequence, it can be suggested that with an increasing number of fluorine substituents at electrophilic carbon centers in a nitrobenzene derivative, a toxic end point of the nitrobenzene other than formation of methemoglobinemia can be foreseen.

Liitu meie
facebooki lehega

Kõige täiuslikum ravimtaimede andmebaas, mida toetab teadus

  • Töötab 55 keeles
  • Taimsed ravimid, mida toetab teadus
  • Maitsetaimede äratundmine pildi järgi
  • Interaktiivne GPS-kaart - märgistage ürdid asukohas (varsti)
  • Lugege oma otsinguga seotud teaduspublikatsioone
  • Otsige ravimtaimi nende mõju järgi
  • Korraldage oma huvisid ja hoidke end kursis uudisteuuringute, kliiniliste uuringute ja patentidega

Sisestage sümptom või haigus ja lugege ravimtaimede kohta, mis võivad aidata, tippige ürdi ja vaadake haigusi ja sümptomeid, mille vastu seda kasutatakse.
* Kogu teave põhineb avaldatud teaduslikel uuringutel

Google Play badgeApp Store badge